These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10413571)

  • 21. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some attributes of cold hardiness of the gregarious ectoparasitoid Colpoclypeus florus (Hymenoptera: Eulophidae).
    Milonas PG; Savopoulou-Soultani M
    Cryo Letters; 2005; 26(6):395-9. PubMed ID: 16547547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica.
    Worland MR
    J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmission of ice-nucleating active bacteria from a prey reduces cold hardiness of a predator (Araneae: Theridiidae).
    Tanaka K; Watanabe M
    Naturwissenschaften; 2003 Oct; 90(10):449-51. PubMed ID: 14564402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of supercooling activity of tannin-related polyphenols.
    Kuwabara C; Wang D; Endoh K; Fukushi Y; Arakawa K; Fujikawa S
    Cryobiology; 2013 Aug; 67(1):40-9. PubMed ID: 23644016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold hardiness of Apteropanorpa tasmanica Carpenter (Mecoptera: Apteropanorpidae).
    Palmer CM; Siebke K
    J Insect Physiol; 2008 Jul; 54(7):1148-56. PubMed ID: 18606167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties.
    Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J
    Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survival of Ice Nucleation-Active and Genetically Engineered Non-Ice-Nucleating Pseudomonas syringae Strains after Freezing.
    Buttner MP; Amy PS
    Appl Environ Microbiol; 1989 Jul; 55(7):1690-4. PubMed ID: 16347963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory responses to chilling and freezing in two sub-antarctic insects.
    Block W; Worland MR; Bale J
    Cryobiology; 1998 Sep; 37(2):163-6. PubMed ID: 9769167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of ice nucleation-active bacteria on plants in nature.
    Lindow SE; Arny DC; Upper CD
    Appl Environ Microbiol; 1978 Dec; 36(6):831-8. PubMed ID: 736541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance.
    Strong-Gunderson JM; Lee RE; Lee MR
    Appl Environ Microbiol; 1992 Sep; 58(9):2711-6. PubMed ID: 16348764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.
    Kozloff LM; Turner MA; Arellano F; Lute M
    J Bacteriol; 1991 Mar; 173(6):2053-60. PubMed ID: 1848220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms.
    Ishikawa M; Yamazaki H; Kishimoto T; Murakawa H; Stait-Gardner T; Kuchitsu K; Price WS
    Adv Exp Med Biol; 2018; 1081():99-115. PubMed ID: 30288706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold hardiness adaptations of codling moth, cydia pomonella.
    Neven LG
    Cryobiology; 1999 Feb; 38(1):43-50. PubMed ID: 10079128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Enterococcus mundtii as a pathogenic agent involved in the "flacherie" disease in Bombyx mori L. larvae reared on artificial diet.
    Cappellozza S; Saviane A; Tettamanti G; Squadrin M; Vendramin E; Paolucci P; Franzetti E; Squartini A
    J Invertebr Pathol; 2011 Mar; 106(3):386-93. PubMed ID: 21167172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of ice-nucleating active Pseudomonas fluorescens strains for biological control of overwintering Colorado potato beetles (Coleoptera: Chrysomelidae).
    Castrillo LA; Lee RE; Lee MR; Rutherford ST
    J Econ Entomol; 2000 Apr; 93(2):226-33. PubMed ID: 10826166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury.
    Hirano SS; Baker LS; Upper CD
    Plant Physiol; 1985 Feb; 77(2):259-65. PubMed ID: 16664039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae.
    Watanabe K; Sato M
    Curr Microbiol; 1998 Nov; 37(5):352-5. PubMed ID: 9767717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of supercooling activities of surfactants.
    Kuwabara C; Terauchi R; Tochigi H; Takaoka H; Arakawa K; Fujikawa S
    Cryobiology; 2014 Aug; 69(1):10-6. PubMed ID: 24792543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis.
    Vanderveer TL; Choi J; Miao D; Walker VK
    Cryobiology; 2014 Aug; 69(1):110-8. PubMed ID: 24930584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.