These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10413863)

  • 1. Structure, force, and energy of a double-stranded DNA oligonucleotide under tensile loads.
    MacKerell AD; Lee GU
    Eur Biophys J; 1999; 28(5):415-26. PubMed ID: 10413863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretching and breaking duplex DNA by chemical force microscopy.
    Noy A; Vezenov DV; Kayyem JF; Meade TJ; Lieber CM
    Chem Biol; 1997 Jul; 4(7):519-27. PubMed ID: 9263640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M; Fonné-Pfister R; Beaudegnies R; Chekatt H; Jung PM; Murphy-Kessabi F; De Mesmaeker A; Wendeborn S
    J Am Chem Soc; 2005 Apr; 127(16):6027-38. PubMed ID: 15839703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. B-S transition in short oligonucleotides.
    Morfill J; Kühner F; Blank K; Lugmaier RA; Sedlmair J; Gaub HE
    Biophys J; 2007 Oct; 93(7):2400-9. PubMed ID: 17557787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rupture force between the third strand and the double strand within a triplex DNA.
    Ling L; Butt HJ; Berger R
    J Am Chem Soc; 2004 Nov; 126(43):13992-7. PubMed ID: 15506761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.
    Holland JG; Geiger FM
    J Phys Chem B; 2012 Jun; 116(22):6302-10. PubMed ID: 22571519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic models for DNA stretching under force: New results and comparison with experiments.
    Manghi M; Destainville N; Palmeri J
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):110. PubMed ID: 23099534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the thermodynamics and base-pair dynamics of a full LNA:DNA duplex and of the isosequential DNA:DNA duplex.
    Bruylants G; Boccongelli M; Snoussi K; Bartik K
    Biochemistry; 2009 Sep; 48(35):8473-82. PubMed ID: 19670874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force and kinetic barriers to initiation of DNA unzipping.
    Cocco S; Monasson R; Marko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041907. PubMed ID: 12005873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices.
    Holbrook JA; Capp MW; Saecker RM; Record MT
    Biochemistry; 1999 Jun; 38(26):8409-22. PubMed ID: 10387087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exceptional thermodynamic stability of DNA duplexes modified by nonpolar base analogues is due to increased stacking interactions and favorable solvation: Correlated ab initio calculations and molecular dynamics simulations.
    Reha D; Hocek M; Hobza P
    Chemistry; 2006 Apr; 12(13):3587-95. PubMed ID: 16502452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation and binding energy calculation for estimation of oligonucleotide duplex thermostability in RNA-based therapeutics.
    Shen L; Johnson TL; Clugston S; Huang H; Butenhof KJ; Stanton RV
    J Chem Inf Model; 2011 Aug; 51(8):1957-65. PubMed ID: 21702481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and dynamics of DNA hybridization.
    Yin Y; Zhao XS
    Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of duplex DNA and RNA by dangling ends studied by free energy simulations.
    Kara M; Zacharias M
    Biopolymers; 2014 Apr; 101(4):418-27. PubMed ID: 23982924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and energy of a DNA dodecamer under tensile load.
    Piana S
    Nucleic Acids Res; 2005; 33(22):7029-38. PubMed ID: 16356925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modelling study of the netropsin complexation with a nucleic acid triple helix.
    Vovelle F; Prévost C; Durand M; Maurizot JC
    J Biomol Struct Dyn; 1996 Dec; 14(3):293-302. PubMed ID: 9016407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of branched DNA molecules: gel retardation and atomic force microscopy studies.
    Oussatcheva EA; Shlyakhtenko LS; Glass R; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 1999 Sep; 292(1):75-86. PubMed ID: 10493858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.