BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10414351)

  • 1. Structure and functions of inhibitory and excitatory glycine receptors.
    Betz H; Kuhse J; Schmieden V; Laube B; Kirsch J; Harvey RJ
    Ann N Y Acad Sci; 1999 Apr; 868():667-76. PubMed ID: 10414351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations within the agonist-binding site convert the homomeric alpha1 glycine receptor into a Zn2+-activated chloride channel.
    Grudzinska J; Schumann T; Schemm R; Betz H; Laube B
    Channels (Austin); 2008; 2(1):13-8. PubMed ID: 18690053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human glycine receptor beta subunit: primary structure, functional characterisation and chromosomal localisation of the human and murine genes.
    Handford CA; Lynch JW; Baker E; Webb GC; Ford JH; Sutherland GR; Schofield PR
    Brain Res Mol Brain Res; 1996 Jan; 35(1-2):211-9. PubMed ID: 8717357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease.
    Schaefer N; Berger A; van Brederode J; Zheng F; Zhang Y; Leacock S; Littau L; Jablonka S; Malhotra S; Topf M; Winter F; Davydova D; Lynch JW; Paige CJ; Alzheimer C; Harvey RJ; Villmann C
    J Neurosci; 2017 Aug; 37(33):7948-7961. PubMed ID: 28724750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of an inhibitory Zn2+ binding site on the human glycine receptor alpha1 subunit.
    Harvey RJ; Thomas P; James CH; Wilderspin A; Smart TG
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):53-64. PubMed ID: 10517800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant.
    Findlay GS; Phelan R; Roberts MT; Homanics GE; Bergeson SE; Lopreato GF; Mihic SJ; Blednov YA; Harris RA
    J Neurosci; 2003 Sep; 23(22):8051-9. PubMed ID: 12954867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.
    Miller PS; Da Silva HM; Smart TG
    J Biol Chem; 2005 Nov; 280(45):37877-84. PubMed ID: 16144831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation.
    Schmieden V; Kuhse J; Betz H
    EMBO J; 1992 Jun; 11(6):2025-32. PubMed ID: 1376243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways.
    Lynch JW; Jacques P; Pierce KD; Schofield PR
    J Neurochem; 1998 Nov; 71(5):2159-68. PubMed ID: 9798943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.
    McCracken LM; Blednov YA; Trudell JR; Benavidez JM; Betz H; Harris RA
    J Pharmacol Exp Ther; 2013 Feb; 344(2):489-500. PubMed ID: 23230213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships.
    Zhorov BS; Bregestovski PD
    Biophys J; 2000 Apr; 78(4):1786-803. PubMed ID: 10733960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus.
    Song W; Chattipakorn SC; McMahon LL
    J Neurophysiol; 2006 Apr; 95(4):2366-79. PubMed ID: 16381810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons.
    Qi M; Wu C; Wang Z; Zhou L; Men C; Du Y; Huang S; Chen L; Chen L
    Cell Physiol Biochem; 2018; 45(3):1084-1096. PubMed ID: 29439248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexpression of the receptor-associated protein gephyrin changes the ligand binding affinities of alpha 2 glycine receptors.
    Takagi T; Pribilla I; Kirsch J; Betz H
    FEBS Lett; 1992 Jun; 303(2-3):178-80. PubMed ID: 1318846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular pharmacology of the glycine receptor chloride channel.
    Webb TI; Lynch JW
    Curr Pharm Des; 2007; 13(23):2350-67. PubMed ID: 17692006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating.
    Moorhouse AJ; Jacques P; Barry PH; Schofield PR
    Mol Pharmacol; 1999 Feb; 55(2):386-95. PubMed ID: 9927632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site.
    Safar F; Hurdiss E; Erotocritou M; Greiner T; Lape R; Irvine MW; Fang G; Jane D; Yu R; Dämgen MA; Biggin PC; Sivilotti LG
    J Biol Chem; 2017 Mar; 292(12):5031-5042. PubMed ID: 28174298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extracellular disulfide loop motif of the inhibitory glycine receptor does not form the agonist binding site.
    Vandenberg RJ; Rajendra S; French CR; Barry PH; Schofield PR
    Mol Pharmacol; 1993 Jul; 44(1):198-203. PubMed ID: 8393521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine-receptor activation is required for receptor clustering in spinal neurons.
    Kirsch J; Betz H
    Nature; 1998 Apr; 392(6677):717-20. PubMed ID: 9565032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory glycine receptors: an update.
    Dutertre S; Becker CM; Betz H
    J Biol Chem; 2012 Nov; 287(48):40216-23. PubMed ID: 23038260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.