BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10414949)

  • 1. On the inhibition of hepatic glycogenolysis by fructose. A 31P-NMR study in perfused rat liver using the fructose analogue 2,5-anhydro-D-mannitol.
    Bruynseels K; Bergans N; Gillis N; van Dorpen F; Van Hecke P; Stalmans W; Vanstapel F
    NMR Biomed; 1999 May; 12(3):145-56. PubMed ID: 10414949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytosolic concentration of phosphate determines the maximal rate of glycogenolysis in perfused rat liver.
    Vanstapel F; Waebens M; Van Hecke P; Decanniere C; Stalmans W
    Biochem J; 1990 Feb; 266(1):207-12. PubMed ID: 2155606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mode of inhibition of glycogenolysis in rat liver by the dihydropyridine derivative, BAY R3401: inhibition and inactivation of glycogen phosphorylase by an activated metabolite.
    Bergans N; Stalmans W; Goldmann S; Vanstapel F
    Diabetes; 2000 Sep; 49(9):1419-26. PubMed ID: 10969824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glycogenolysis by 2,5-anhydro-D-mannitol in isolated rat hepatocytes.
    Stevens HC; Dills WL
    FEBS Lett; 1984 Jan; 165(2):247-50. PubMed ID: 6420189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of glucagon and fructose in the control of glycogenolysis in perfused rat liver.
    Jakob A
    Mol Cell Endocrinol; 1976 Nov; 6(1):47-58. PubMed ID: 1001807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of basal hepatic glycogenolysis by nitric oxide.
    Borgs M; Bollen M; Keppens S; Yap SH; Stalmans W; Vanstapel F
    Hepatology; 1996 Jun; 23(6):1564-71. PubMed ID: 8675178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hepatic glycogenolysis induced by reversible ischaemia or KCN is exclusively catalysed by phosphorylase a.
    Vandebroeck A; Uyttenhove K; Bollen M; Stalmans W
    Biochem J; 1988 Dec; 256(2):685-8. PubMed ID: 3223940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart.
    Depré C; Veitch K; Hue L
    Acta Cardiol; 1993; 48(1):147-64. PubMed ID: 8447185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol.
    Hanson RL; Ho RS; Wiseberg JJ; Simpson R; Younathan ES; Blair JB
    J Biol Chem; 1984 Jan; 259(1):218-23. PubMed ID: 6423625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of maximal glycogenolysis in perfused rat liver by adenosine and ATP.
    Vanstapel F; Waebens M; Van Hecke P; Decanniere C; Stalmans W
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):597-602. PubMed ID: 1872795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular mechanism of action of sympathetic hepatic nerves on glucose and lactate balance in perfused rat liver.
    Ballé C; Beuers U; Engelhardt R; Jungermann K
    Eur J Biochem; 1987 Dec; 170(1-2):193-9. PubMed ID: 2826151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crucial role of intracellular effectors on glycogenolysis in the isolated rat heart: potential consequences on the myocardial tolerance to ischemia.
    Lavanchy N; Grably S; Garnier A; Rossi A
    Mol Cell Biochem; 1996; 160-161():273-82. PubMed ID: 8901483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose effect to suppress hepatic glycogen degradation.
    Youn JH; Kaslow HR; Bergman RN
    J Biol Chem; 1987 Aug; 262(24):11470-7. PubMed ID: 3114246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro 31P magnetic resonance spectroscopic studies of the hepatic response of healthy rats and rats with acute hepatic damage to fructose loading.
    Lu W; Locke SJ; Brauer M
    Magn Reson Med; 1994 May; 31(5):469-81. PubMed ID: 8015399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle.
    Ren JM; Gulve EA; Cartee GD; Holloszy JO
    Am J Physiol; 1992 Dec; 263(6):E1086-91. PubMed ID: 1476181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early detection of cancer cachexia in the rat using 31P magnetic resonance spectroscopy of the liver and a fructose stress test.
    Gehman KE; Inculet RI; Brauer M; Marsh GD; Driedger AA; Thompson RT
    NMR Biomed; 1996 Sep; 9(6):271-5. PubMed ID: 9073305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver.
    Buxton DB; Robertson SM; Olson MS
    Biochem J; 1986 Aug; 237(3):773-80. PubMed ID: 3026332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effect of [Asu1 . 7]-eel calcitonin on glucagon-induced glycogenolysis in perfused rat liver.
    Mine T; Kimura S; Ogata E
    Horm Metab Res; 1983 Mar; 15(3):139-43. PubMed ID: 6303930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of hepatic inorganic phosphate and ATP in response to fructose loading: an in vivo 31P-NMR study.
    Karczmar GS; Kurtz T; Tavares NJ; Weiner MW
    Biochim Biophys Acta; 1989 Jul; 1012(2):121-7. PubMed ID: 2742879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism of glucose and fructose in net glycogen synthesis in perfused rat livers.
    Youn JH; Youn MS; Bergman RN
    J Biol Chem; 1986 Dec; 261(34):15960-9. PubMed ID: 3023336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.