These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10415123)

  • 1. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biosynthetic incorporation of fluorescently labelled fatty acids in Escherichia coli].
    Tsukerman AI; Dobretsov GE; Golovinova VB; Dombrovskiĭ AM
    Mikrobiologiia; 1982; 51(4):557-9. PubMed ID: 6755195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid profile of Escherichia coli during the heat-shock response.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Biochem Mol Biol Int; 1999 May; 47(5):835-44. PubMed ID: 10365254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperthermic sensitivity and growth stage in Escherichia coli.
    Yatvin MB; Gipp JJ; Klessig DR; Dennis WH
    Radiat Res; 1986 Apr; 106(1):78-88. PubMed ID: 3515400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane fluidity of Escherichia coli during heat-shock.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Biochim Biophys Acta; 1995 Nov; 1239(2):195-200. PubMed ID: 7488624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of independent variations in fatty acid structure and chain length on lipid polar headgroup composition in Acholeplasma laidlawii B membranes: regulation of lamellar/nonlamellar phase propensity.
    Yue AW; Wong BC; Rieder J; Lewis RN; Mannock DA; McElhaney RN
    Biochemistry; 2003 Feb; 42(5):1309-17. PubMed ID: 12564934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe.
    Almeida LM; Vaz WL; Zachariasse KA; Madeira VM
    Biochemistry; 1982 Nov; 21(23):5972-7. PubMed ID: 7150540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains.
    Timmons MD; Knutson BL; Nokes SE; Strobel HJ; Lynn BC
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):929-39. PubMed ID: 19221734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae.
    Aricha B; Fishov I; Cohen Z; Sikron N; Pesakhov S; Khozin-Goldberg I; Dagan R; Porat N
    J Bacteriol; 2004 Jul; 186(14):4638-44. PubMed ID: 15231797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the membrane fluidity of erythrocyte ghosts in diabetic, spontaneously hypertensive rats.
    Pérez-Hernández IH; Avendaño-Flores YS; Mejía-Zepeda R
    Acta Diabetol; 2010 Dec; 47 Suppl 1():47-55. PubMed ID: 19404568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of some environmental factors on the content and composition of microbial membrane lipids.
    Sajbidor J
    Crit Rev Biotechnol; 1997; 17(2):87-103. PubMed ID: 9192472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids.
    Unell M; Kabelitz N; Jansson JK; Heipieper HJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPS, the slope of Laurdan generalized polarization spectra, in the study of phospholipid lateral organization and Escherichia coli lipid phases.
    Velázquez JB; Fernández MS
    Arch Biochem Biophys; 2006 Nov; 455(2):163-74. PubMed ID: 17046709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of membrane lipid fluidity by membrane lipid biosynthesis.
    Sinensky MS
    Adv Pathobiol; 1980; 7():365-76. PubMed ID: 6996461
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli.
    Eze MO; McElhaney RN
    J Gen Microbiol; 1981 Jun; 124(2):299-307. PubMed ID: 7035612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout.
    Zehmer JK; Hazel JR
    J Exp Biol; 2005 Nov; 208(Pt 22):4283-90. PubMed ID: 16272251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluidity of bacterial membrane lipids monitored by intramolecular excimerization of 1.3-di(2-pyrenyl)propane.
    Jurado AS; Almeida LM; Madeira VM
    Biochem Biophys Res Commun; 1991 Apr; 176(1):356-63. PubMed ID: 2018528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.