BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 10415384)

  • 1. Hypoprolactinemic rats under conditions of constant darkness or constant light. Effects on the sleep-wake cycle, cerebral temperature and sulfatoxymelatonin levels.
    Lobo LL; Claustrat B; Debilly G; Paut-Pagano L; Jouvet M; Valatx JL
    Brain Res; 1999 Jul; 835(2):282-9. PubMed ID: 10415384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Circadian rhythms of slow-wave sleep and paradoxical sleep are in opposite phase in genetically hypoprolactinemic rats].
    Valatx JL; Jouvet M
    C R Acad Sci III; 1988; 307(17):789-94. PubMed ID: 3144410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant light suppresses sleep and circadian rhythms in pigeons without consequent sleep rebound in darkness.
    Berger RJ; Phillips NH
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R945-52. PubMed ID: 7943436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats.
    Yasuda T; Yasuda K; Brown RA; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1083-9. PubMed ID: 16183627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian, sleep and brain temperature rhythms in cats under sustained daily light-dark cycles and constant darkness.
    Kuwabara N; Seki K; Aoki K
    Physiol Behav; 1986; 38(2):283-9. PubMed ID: 3797494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room light impairs sleep in the albino rat.
    Tobler I; Franken P; Alföldi P; Borbély AA
    Behav Brain Res; 1994 Aug; 63(2):205-11. PubMed ID: 7999304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and motor activity of the rat during ultra-short light-dark cycles.
    Borbély AA
    Brain Res; 1976 Sep; 114(2):305-17. PubMed ID: 963552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex effects of melatonin on human circadian rhythms in constant dim light.
    Middleton B; Arendt J; Stone BM
    J Biol Rhythms; 1997 Oct; 12(5):467-77. PubMed ID: 9376645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.
    Gubin DG; Weinert D; Rybina SV; Danilova LA; Solovieva SV; Durov AM; Prokopiev NY; Ushakov PA
    Chronobiol Int; 2017; 34(5):632-649. PubMed ID: 28276854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenesis of circadian sleep-wakefulness rhythms and developmental changes of sleep in the altricial rat and in the precocial guinea pig.
    Ibuka N
    Behav Brain Res; 1984 Mar; 11(3):185-96. PubMed ID: 6721913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interruption of the rat circadian clock by short light-dark cycles.
    Usui S; Okazaki T; Honda Y
    Am J Physiol Regul Integr Comp Physiol; 2003 May; 284(5):R1255-9. PubMed ID: 12676747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian Melatonin and Temperature Taus in Delayed Sleep-wake Phase Disorder and Non-24-hour Sleep-wake Rhythm Disorder Patients: An Ultradian Constant Routine Study.
    Micic G; Lovato N; Gradisar M; Burgess HJ; Ferguson SA; Lack L
    J Biol Rhythms; 2016 Aug; 31(4):387-405. PubMed ID: 27312974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep-wake behavior in the rat: ultradian rhythms in a light-dark cycle and continuous bright light.
    Stephenson R; Lim J; Famina S; Caron AM; Dowse HB
    J Biol Rhythms; 2012 Dec; 27(6):490-501. PubMed ID: 23223374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination.
    Ashley NT; Ubuka T; Schwabl I; Goymann W; Salli BM; Bentley GE; Buck CL
    J Biol Rhythms; 2014 Dec; 29(6):456-69. PubMed ID: 25326246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind).
    Villamizar N; Blanco-Vives B; Oliveira C; Dinis MT; Di Rosa V; Negrini P; Bertolucci C; Sánchez-Vázquez FJ
    Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet.
    Luppi M; Cerri M; Martelli D; Tupone D; Del Vecchio F; Di Cristoforo A; Perez E; Zamboni G; Amici R
    Behav Brain Res; 2014 Jan; 258():145-52. PubMed ID: 24149066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian sleep-wake cycle organization in squirrel monkeys.
    Wexler DB; Moore-Ede MC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R353-62. PubMed ID: 3976909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin: Physiological effects in humans.
    Claustrat B; Leston J
    Neurochirurgie; 2015; 61(2-3):77-84. PubMed ID: 25908646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.