These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10415683)

  • 21. Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment.
    Harris GC; Aston-Jones G
    Neuropsychopharmacology; 2003 Jan; 28(1):73-6. PubMed ID: 12496942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AMPA/kainate receptors mediate sympathetic chemoreceptor reflex in the rostral ventrolateral medulla.
    Miyawaki T; Minson J; Arnolda L; Llewellyn-Smith I; Chalmers J; Pilowsky P
    Brain Res; 1996 Jul; 726(1-2):64-8. PubMed ID: 8836546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.
    Metzger F; Kulik A; Sendtner M; Ballanyi K
    J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of AMPA and kainate glutamate receptors impairs the viability of oligodendrocytes in vitro.
    Sanchez-Gomez MV; Matute C
    Int J Dev Biol; 1996; Suppl 1():187S-188S. PubMed ID: 9087754
    [No Abstract]   [Full Text] [Related]  

  • 25. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses.
    Schmitz D; Mellor J; Nicoll RA
    Science; 2001 Mar; 291(5510):1972-6. PubMed ID: 11239159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of glutamate receptor subtypes in the lamprey respiratory network.
    Bongianni F; Deliagina TG; Grillner S
    Brain Res; 1999 May; 826(2):298-302. PubMed ID: 10224308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area.
    Fu Y; Matta SG; Gao W; Brower VG; Sharp BM
    J Pharmacol Exp Ther; 2000 Aug; 294(2):458-65. PubMed ID: 10900219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of AMPA/kainate-excitotoxicity in MK801-induced neuronal death in the retrosplenial cortex.
    Bender C; Rassetto M; de Olmos JS; de Olmos S; Lorenzo A
    Neuroscience; 2010 Aug; 169(2):720-32. PubMed ID: 20457221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution and properties of kainate receptors distinct in the CA3 region of the hippocampus of the guinea pig.
    Yamamoto C; Sawada S; Ohno-Shosaku T
    Brain Res; 1998 Feb; 783(2):227-35. PubMed ID: 9507146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-N-methyl-D-aspartate receptor antagonism by 3-N-substituted 2,3-benzodiazepines: relationship to anticonvulsant activity.
    Donevan SD; Yamaguchi S; Rogawski MA
    J Pharmacol Exp Ther; 1994 Oct; 271(1):25-9. PubMed ID: 7525924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons.
    Castillo PE; Malenka RC; Nicoll RA
    Nature; 1997 Jul; 388(6638):182-6. PubMed ID: 9217159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual roles in feeding for AMPA/kainate receptors: receptor activation or inactivation within distinct hypothalamic regions elicits feeding behavior.
    Hettes SR; Gonzaga J; Heyming TW; Perez S; Wolfsohn S; Stanley BG
    Brain Res; 2003 Dec; 992(2):167-78. PubMed ID: 14625056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis.
    Mitsikostas DD; Sanchez del Rio M; Waeber C; Huang Z; Cutrer FM; Moskowitz MA
    Br J Pharmacol; 1999 Jun; 127(3):623-30. PubMed ID: 10401552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebellar AMPA/KA receptor antagonism by CNQX inhibits vestibuloocular reflex adaptation.
    Carter TL; McElligott JG
    Exp Brain Res; 2005 Oct; 166(2):157-69. PubMed ID: 16082536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of striatal activity in conscious rats: contribution of NMDA and AMPA/kainate receptors to both spontaneous and glutamate-driven firing.
    Sandstrom MI; Rebec GV
    Synapse; 2003 Feb; 47(2):91-100. PubMed ID: 12454946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors.
    Michel S; Itri J; Colwell CS
    J Neurophysiol; 2002 Aug; 88(2):817-28. PubMed ID: 12163533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. D-cycloserine facilitates synaptic plasticity but impairs glutamatergic neurotransmission in rat hippocampal slices.
    Rouaud E; Billard JM
    Br J Pharmacol; 2003 Nov; 140(6):1051-6. PubMed ID: 14530208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protection against non-NMDA receptor-mediated excitotoxicity by GYKI 52466 in mature telencephalic cultures of the rat.
    Kovács AD; Egyed A
    Neurobiology (Bp); 1996; 4(1-2):59-72. PubMed ID: 9116695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata.
    Wittmann M; Marino MJ; Bradley SR; Conn PJ
    J Neurophysiol; 2001 May; 85(5):1960-8. PubMed ID: 11353013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat.
    Jones TL; Sorkin LS
    J Pharmacol Exp Ther; 2004 Jul; 310(1):223-9. PubMed ID: 15007101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.