BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10416031)

  • 1. Cytosolic NADPH-UQ reductase, the enzyme responsible for cellular ubiquinone redox cycle as an endogenous antioxidant in the rat liver.
    Kishi T; Takahashi T; Usui A; Hashizume N; Okamoto T
    Biofactors; 1999; 9(2-4):189-97. PubMed ID: 10416031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation.
    Takahashi T; Yamaguchi T; Shitashige M; Okamoto T; Kishi T
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):883-90. PubMed ID: 7639706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of NADPH-dependent ubiquinone reductase activity in rat liver cytosol: effect of various factors on ubiquinone-reducing activity and discrimination from other quinone reductases.
    Takahashi T; Okamoto T; Kishi T
    J Biochem; 1996 Feb; 119(2):256-63. PubMed ID: 8882715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat.
    Kishi T; Takahashi T; Okamoto T
    Mol Aspects Med; 1997; 18 Suppl():S71-7. PubMed ID: 9266508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant roles of cellular ubiquinone and related redox cycles: potentiated resistance of rat hepatocytes having stimulated NADPH-dependent ubiquinone reductase against hydrogen peroxide toxicity.
    Takahashi T; Hohda T; Sugimoto N; Mizobuchi S; Okamoto T; Mori K; Kishi T
    Biol Pharm Bull; 1999 Nov; 22(11):1226-33. PubMed ID: 10598033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquinone redox cycle as a cellular antioxidant defense system.
    Kishi T; Takahashi T; Usui A; Okamoto T
    Biofactors; 1999; 10(2-3):131-8. PubMed ID: 10609874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular antioxidant defense by a ubiquinol-regenerating system coupled with cytosolic NADPH-dependent ubiquinone reductase: protective effect against carbon tetrachloride-induced hepatotoxicity in the rat.
    Takahashi T; Sugimoto N; Takahata K; Okamoto T; Kishi T
    Biol Pharm Bull; 1996 Aug; 19(8):1005-12. PubMed ID: 8874805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel ubiquinone reductase activity in rat cytosol.
    Takahashi T; Shitashige M; Okamoto T; Kishi T; Goshima K
    FEBS Lett; 1992 Dec; 314(3):331-4. PubMed ID: 1468565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dicumarol, a Nad(P)h: quinone acceptor oxidoreductase 1 (DT-diaphorase) inhibitor on ubiquinone redox cycling in cultured rat hepatocytes.
    Kishi T; Takahashi T; Mizobuchi S; Mori K; Okamoto T
    Free Radic Res; 2002 Apr; 36(4):413-9. PubMed ID: 12069105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes.
    Beyer RE; Segura-Aguilar J; di Bernardo S; Cavazzoni M; Fato R; Fiorentini D; Galli MC; Setti M; Landi L; Lenaz G
    Mol Aspects Med; 1997; 18 Suppl():S15-23. PubMed ID: 9266502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane.
    Navarro F; Navas P; Burgess JR; Bello RI; De Cabo R; Arroyo A; Villalba JM
    FASEB J; 1998 Dec; 12(15):1665-73. PubMed ID: 9837856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer.
    Gregor W; Staniek K; Nohl H; Gille L
    Biochem Pharmacol; 2006 May; 71(11):1589-601. PubMed ID: 16569397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of NAD(P)H-dependent ubiquinone reductase activities in rat liver microsomes.
    Shigemura T; Kang D; Nagata-Kuno K; Takeshige K; Hamasaki N
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):213-20. PubMed ID: 8443209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.
    Takahashi T; Okuno M; Okamoto T; Kishi T
    Biofactors; 2008; 32(1-4):59-70. PubMed ID: 19096101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved?
    Aiyar J; De Flora S; Wetterhahn KE
    Carcinogenesis; 1992 Jul; 13(7):1159-66. PubMed ID: 1379126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the antioxidant capacity of ubiquinol and dihydrolipoic acid.
    Nohl H; Gille L
    Z Naturforsch C J Biosci; 1998; 53(3-4):250-3. PubMed ID: 9618938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phosphatidylcholine monolayer.
    Moncelli MR; Herrero R; Becucci L; Guidelli R
    Biochim Biophys Acta; 1998 May; 1364(3):373-84. PubMed ID: 9630726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
    Zhang J; Frerman FE; Kim JJ
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16212-7. PubMed ID: 17050691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.