BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10417337)

  • 1. An unusual case of 'uncompetitive activation' by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings.
    Shikita M; Fahey JW; Golden TR; Holtzclaw WD; Talalay P
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):725-32. PubMed ID: 10417337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots.
    Li X; Kushad MM
    Plant Physiol Biochem; 2005 Jun; 43(6):503-11. PubMed ID: 15922609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore.
    Pontoppidan B; Ekbom B; Eriksson S; Meijer J
    Eur J Biochem; 2001 Feb; 268(4):1041-8. PubMed ID: 11179970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from
    Galádová H; Polozsányi Z; Breier A; Šimkovič M
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds.
    Bellostas N; Petersen IL; Sørensen JC; Sørensen H
    J Biochem Biophys Methods; 2008 Apr; 70(6):918-25. PubMed ID: 18160132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase).
    Mahn A; Angulo A; Cabañas F
    J Agric Food Chem; 2014 Dec; 62(48):11666-71. PubMed ID: 25390544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and Characterization of a Novel Redox-Regulated Isoform of Myrosinase (β-Thioglucoside Glucohydrolase) from Lepidium latifolium L.
    Bhat R; Kaur T; Khajuria M; Vyas R; Vyas D
    J Agric Food Chem; 2015 Dec; 63(47):10218-26. PubMed ID: 26527478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of aphid myrosinase and degradation studies of glucosinolates.
    Francis F; Lognay G; Wathelet JP; Haubruge E
    Arch Insect Biochem Physiol; 2002 Aug; 50(4):173-82. PubMed ID: 12125058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC).
    Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G
    Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.
    Wade KL; Ito Y; Ramarathnam A; Holtzclaw WD; Fahey JW
    Phytochem Anal; 2015; 26(1):47-53. PubMed ID: 25130502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties.
    Andersson D; Chakrabarty R; Bejai S; Zhang J; Rask L; Meijer J
    Phytochemistry; 2009; 70(11-12):1345-54. PubMed ID: 19703694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Castanospermine and Related Polyhydroxyalkaloids on Purified Myrosinase from Lepidium sativum Seedlings.
    Durham PL; Poulton JE
    Plant Physiol; 1989 May; 90(1):48-52. PubMed ID: 16666767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach.
    Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C
    Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of myrosinase (thioglucoside glucohydrolase) activity by a spectrophotometric coupled enzyme assay.
    Wilkinson AP; Rhodes MJ; Fenwick GR
    Anal Biochem; 1984 Jun; 139(2):284-91. PubMed ID: 6476365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the glucosinolate-myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties.
    Nakamura Y; Nakamura K; Asai Y; Wada T; Tanaka K; Matsuo T; Okamoto S; Meijer J; Kitamura Y; Nishikawa A; Park EY; Sato K; Ohtsuki K
    J Agric Food Chem; 2008 Apr; 56(8):2702-7. PubMed ID: 18345631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel β-thioglucosidase CpTGG1 in Carica papaya and its substrate-dependent and ascorbic acid-independent O-β-glucosidase activity.
    Nong H; Zhang JM; Li DQ; Wang M; Sun XP; Zhu YJ; Meijer J; Wang QH
    J Integr Plant Biol; 2010 Oct; 52(10):879-90. PubMed ID: 20883440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of β-thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana.
    Zhou C; Tokuhisa JG; Bevan DR; Esen A
    Plant Sci; 2012 Aug; 191-192():82-92. PubMed ID: 22682567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of L-ascorbic acid with the active center of myrosinase.
    Ohtsuru M; Hata T
    Biochim Biophys Acta; 1979 Apr; 567(2):384-91. PubMed ID: 109123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana).
    Li X; Kushad MM
    J Agric Food Chem; 2004 Nov; 52(23):6950-5. PubMed ID: 15537302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invertase from a strain of Rhodotorula glutinis.
    Rubio MC; Runco R; Navarro AR
    Phytochemistry; 2002 Nov; 61(6):605-9. PubMed ID: 12423880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.