These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 10417816)

  • 1. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium currents in endfeet of isolated Müller cells from the frog retina.
    Skatchkov SN; Vyklický L; Orkand RK
    Glia; 1995 Sep; 15(1):54-64. PubMed ID: 8847101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering.
    Brew H; Gray PT; Mobbs P; Attwell D
    Nature; 1986 Dec 4-10; 324(6096):466-8. PubMed ID: 2431322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells.
    Skatchkov SN; Eaton MJ; Shuba YM; Kucheryavykh YV; Derst C; Veh RW; Wurm A; Iandiev I; Pannicke T; Bringmann A; Reichenbach A
    Glia; 2006 Feb; 53(3):266-76. PubMed ID: 16265669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.
    Reichenbach A; Eberhardt W
    Glia; 1988; 1(3):191-7. PubMed ID: 2976038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ Channel density increases selectively in the endfoot of retinal glial cells during development of Rana catesbiana.
    Rojas L; Orkand RK
    Glia; 1999 Jan; 25(2):199-203. PubMed ID: 9890634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of spermine/spermidine content and K(+)-current rectification in frog retinal glial (Müller) cells.
    Skatchkov SN; Eaton MJ; Krusek J; Veh RW; Biedermann B; Bringmann A; Pannicke T; Orkand RK; Reichenbach A
    Glia; 2000 Jul; 31(1):84-90. PubMed ID: 10816609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inward-rectifying potassium channels in retinal glial (Müller) cells.
    Newman EA
    J Neurosci; 1993 Aug; 13(8):3333-45. PubMed ID: 8340811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy.
    Bringmann A; Francke M; Pannicke T; Biedermann B; Faude F; Enzmann V; Wiedemann P; Reichelt W; Reichenbach A
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3316-23. PubMed ID: 10586958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development.
    Schopf S; Ruge H; Bringmann A; Reichenbach A; Skatchkov SN
    Neurosci Lett; 2004 Jul; 365(3):167-70. PubMed ID: 15246541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patch-clamp recording from Müller (glial) cell endfeet in the intact isolated retina and acutely isolated Müller cells of mouse and guinea-pig.
    Reichelt W; Müller T; Pastor A; Pannicke T; Orkand PM; Kettenmann H; Schnitzer J
    Neuroscience; 1993 Dec; 57(3):599-613. PubMed ID: 8309526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial cell reactivity in a porcine model of retinal detachment.
    Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR.
    Francke M; Faude F; Pannicke T; Bringmann A; Eckstein P; Reichelt W; Wiedemann P; Reichenbach A
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1072-9. PubMed ID: 11274088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological properties of retinal Muller glial cells from the cynomolgus monkey, Macaca fascicularis--a comparison to human Muller cells.
    Pannicke T; Biedermann B; Uckermann O; Weick M; Bringmann A; Wolf S; Wiedemann P; Habermann G; Buse E; Reichenbach A
    Vision Res; 2005 Jun; 45(14):1781-91. PubMed ID: 15797768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(A) receptors in Müller glial cells of the human retina.
    Biedermann B; Bringmann A; Franze K; Faude F; Wiedemann P; Reichenbach A
    Glia; 2004 May; 46(3):302-10. PubMed ID: 15048853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative morphology of rabbit retinal glia. A light microscopical study on cells both in situ and isolated by papaine.
    Reichenbach A
    J Hirnforsch; 1987; 28(2):213-20. PubMed ID: 3624860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Müller cell response to blue light injury of the rat retina.
    Iandiev I; Wurm A; Hollborn M; Wiedemann P; Grimm C; Remé CE; Reichenbach A; Pannicke T; Bringmann A
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3559-67. PubMed ID: 18450590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels.
    Nilius B; Reichenbach A
    Pflugers Arch; 1988 Jun; 411(6):654-60. PubMed ID: 2457869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.