These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 10417982)
1. Flexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Le T; Tseng TT; Saier MH Mol Membr Biol; 1999; 16(2):173-9. PubMed ID: 10417982 [TBL] [Abstract][Full Text] [Related]
2. Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system. Nguyen TX; Yen MR; Barabote RD; Saier MH J Mol Microbiol Biotechnol; 2006; 11(6):345-60. PubMed ID: 17114898 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. Hvorup R; Chang AB; Saier MH J Mol Microbiol Biotechnol; 2003; 6(3-4):191-205. PubMed ID: 15153772 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. Reizer A; Pao GM; Saier MH J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454 [TBL] [Abstract][Full Text] [Related]
5. A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. Zhai Y; Saier MH J Mol Microbiol Biotechnol; 2001 Apr; 3(2):285-6. PubMed ID: 11321584 [TBL] [Abstract][Full Text] [Related]
6. A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: application to the distribution of aromatic versus aliphatic hydrophobic amino acids in transmembrane alpha-helical spanners of integral membrane transport proteins. Tsang S; Saier MH J Comput Biol; 1996; 3(1):185-90. PubMed ID: 8697235 [TBL] [Abstract][Full Text] [Related]
7. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. Saier MH; Yamada M; Erni B; Suda K; Lengeler J; Ebner R; Argos P; Rak B; Schnetz K; Lee CA FASEB J; 1988 Mar; 2(3):199-208. PubMed ID: 2832233 [TBL] [Abstract][Full Text] [Related]
8. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048 [TBL] [Abstract][Full Text] [Related]
9. Bacterial proteins with N-terminal leader sequences resembling mitochondrial targeting sequences of eukaryotes. Saier MH; Yamada M; Suda K; Erni B; Rak B; Lengeler J; Stewart GC; Waygood EB; Rapoport G Biochimie; 1988 Dec; 70(12):1743-8. PubMed ID: 3150678 [TBL] [Abstract][Full Text] [Related]
10. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Hallén S; Mareninova O; Brändén M; Sachs G Biochemistry; 2002 Jun; 41(23):7253-66. PubMed ID: 12044156 [TBL] [Abstract][Full Text] [Related]
11. The Escherichia coli mannitol permease as a model for transport via the bacterial phosphotransferase system. Jacobson GR; Saraceni-Richards C J Bioenerg Biomembr; 1993 Dec; 25(6):621-6. PubMed ID: 8144490 [TBL] [Abstract][Full Text] [Related]
12. Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate: sugar phosphotransferase system. Reizer J; Reizer A; Kornberg HL; Saier MH FEMS Microbiol Lett; 1994 May; 118(1-2):159-62. PubMed ID: 8013873 [TBL] [Abstract][Full Text] [Related]
13. EDD, a novel phosphotransferase domain common to mannose transporter EIIA, dihydroxyacetone kinase, and DegV. Kinch LN; Cheek S; Grishin NV Protein Sci; 2005 Feb; 14(2):360-7. PubMed ID: 15632288 [TBL] [Abstract][Full Text] [Related]
14. Web-based programs for the display and analysis of transmembrane alpha-helices in aligned protein sequences. Zhou X; Yang NM; Tran CV; Hvorup RN; Saier MH J Mol Microbiol Biotechnol; 2003; 5(1):1-6. PubMed ID: 12673055 [TBL] [Abstract][Full Text] [Related]
15. The structure of enzyme IIAlactose from Lactococcus lactis reveals a new fold and points to possible interactions of a multicomponent system. Sliz P; Engelmann R; Hengstenberg W; Pai EF Structure; 1997 Jun; 5(6):775-88. PubMed ID: 9261069 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Gonzalez CF; Stonestrom AJ; Lorca GL; Saier MH Biochemistry; 2005 Jan; 44(2):598-608. PubMed ID: 15641785 [TBL] [Abstract][Full Text] [Related]
17. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Liao DI; Silverton E; Seok YJ; Lee BR; Peterkofsky A; Davies DR Structure; 1996 Jul; 4(7):861-72. PubMed ID: 8805571 [TBL] [Abstract][Full Text] [Related]
18. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man). Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231 [TBL] [Abstract][Full Text] [Related]