BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 10419131)

  • 1. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process.
    Sprecher H; Chen Q; Yin FQ
    Lipids; 1999; 34 Suppl():S153-6. PubMed ID: 10419131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids.
    Infante JP; Huszagh VA
    FEBS Lett; 1998 Jul; 431(1):1-6. PubMed ID: 9684854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New advances in fatty-acid biosynthesis.
    Sprecher H
    Nutrition; 1996 Jan; 12(1 Suppl):S5-7. PubMed ID: 8850211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells.
    Park HG; Park WJ; Kothapalli KS; Brenna JT
    FASEB J; 2015 Sep; 29(9):3911-9. PubMed ID: 26065859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of highly unsaturated n-3 and n-6 fatty acids.
    Sprecher H
    Biochim Biophys Acta; 2000 Jul; 1486(2-3):219-31. PubMed ID: 10903473
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of docosahexaenoic (22:6n-3), tetracosapentaenoic (24:5n-3) and tetracosahexaenoic (24:6n-3) acids on the desaturation and elongation of n-3 polyunsaturated fatty acids in trout liver microsomes.
    Henderson RJ; Burkow IC; Buzzi M; Bayer A
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):309-19. PubMed ID: 9630696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids.
    Sprecher H; Luthria DL; Mohammed BS; Baykousheva SP
    J Lipid Res; 1995 Dec; 36(12):2471-7. PubMed ID: 8847474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathway from arachidonic to docosapentaenoic acid (20:4n-6 to 22:5n-6) and from eicosapentaenoic to docosahexaenoic acid (20:5n-3 to 22:6n-3) studied in testicular cells from immature rats.
    Retterstøl K; Haugen TB; Christophersen BO
    Biochim Biophys Acta; 2000 Jan; 1483(1):119-31. PubMed ID: 10601701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition.
    Stark KD; Lim SY; Salem N
    Lipids Health Dis; 2007 Apr; 6():13. PubMed ID: 17459159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids.
    Sprecher H
    Prostaglandins Leukot Essent Fatty Acids; 2002; 67(2-3):79-83. PubMed ID: 12324224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A
    Remize M; Planchon F; Garnier M; Loh AN; Le Grand F; Bideau A; Lambert C; Corvaisier R; Volety A; Soudant P
    Mar Drugs; 2021 Dec; 20(1):. PubMed ID: 35049877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyunsaturated fatty acid biosynthesis: a microsomal-peroxisomal process.
    Sprecher H; Chen Q
    Prostaglandins Leukot Essent Fatty Acids; 1999; 60(5-6):317-21. PubMed ID: 10471115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders.
    Infante JP; Huszagh VA
    Mol Cell Biochem; 1997 Mar; 168(1-2):101-15. PubMed ID: 9062899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of beef- and fish-based diets on the kinetics of n-3 fatty acid metabolism in human subjects.
    Pawlosky RJ; Hibbeln JR; Lin Y; Goodson S; Riggs P; Sebring N; Brown GL; Salem N
    Am J Clin Nutr; 2003 Mar; 77(3):565-72. PubMed ID: 12600844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 20:5n-3 but not 22:6n-3 is a preferred substrate for synthesis of n-3 very-long- chain fatty acids (C24-C36) in retina.
    Suh M; Clandinin MT
    Curr Eye Res; 2005 Nov; 30(11):959-68. PubMed ID: 16282130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes.
    Pawar A; Jump DB
    J Biol Chem; 2003 Sep; 278(38):35931-9. PubMed ID: 12853447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the metabolic fate of n-3 polyunsaturated fatty acids.
    Ferdinandusse S; Denis S; Dacremont G; Wanders RJ
    J Lipid Res; 2003 Oct; 44(10):1992-7. PubMed ID: 12897190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary fat and environmental lighting on the phospholipid molecular species of rat photoreceptor membranes.
    Wiegand RD; Koutz CA; Chen H; Anderson RE
    Exp Eye Res; 1995 Mar; 60(3):291-306. PubMed ID: 7789409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes.
    Datsomor AK; Zic N; Li K; Olsen RE; Jin Y; Vik JO; Edvardsen RB; Grammes F; Wargelius A; Winge P
    Sci Rep; 2019 May; 9(1):7533. PubMed ID: 31101849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and expression of mammalian long-chain PUFA elongation enzymes.
    Leonard AE; Kelder B; Bobik EG; Chuang LT; Lewis CJ; Kopchick JJ; Mukerji P; Huang YS
    Lipids; 2002 Aug; 37(8):733-40. PubMed ID: 12371743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.