BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 10419478)

  • 1. DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III.
    Mackey ZB; Niedergang C; Murcia JM; Leppard J; Au K; Chen J; de Murcia G; Tomkinson AE
    J Biol Chem; 1999 Jul; 274(31):21679-87. PubMed ID: 10419478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the DNA ligase III zinc finger in polynucleotide binding and ligation.
    Taylor RM; Whitehouse J; Cappelli E; Frosina G; Caldecott KW
    Nucleic Acids Res; 1998 Nov; 26(21):4804-10. PubMed ID: 9776738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
    Leppard JB; Dong Z; Mackey ZB; Tomkinson AE
    Mol Cell Biol; 2003 Aug; 23(16):5919-27. PubMed ID: 12897160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro.
    Caldecott KW; Aoufouchi S; Johnson P; Shall S
    Nucleic Acids Res; 1996 Nov; 24(22):4387-94. PubMed ID: 8948628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage.
    Masson M; Niedergang C; Schreiber V; Muller S; Menissier-de Murcia J; de Murcia G
    Mol Cell Biol; 1998 Jun; 18(6):3563-71. PubMed ID: 9584196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
    Cotner-Gohara E; Kim IK; Hammel M; Tainer JA; Tomkinson AE; Ellenberger T
    Biochemistry; 2010 Jul; 49(29):6165-76. PubMed ID: 20518483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two DNA-binding and nick recognition modules in human DNA ligase III.
    Cotner-Gohara E; Kim IK; Tomkinson AE; Ellenberger T
    J Biol Chem; 2008 Apr; 283(16):10764-72. PubMed ID: 18238776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA ligases in the repair and replication of DNA.
    Timson DJ; Singleton MR; Wigley DB
    Mutat Res; 2000 Aug; 460(3-4):301-18. PubMed ID: 10946235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA ligase III zinc finger stimulates binding to DNA secondary structure and promotes end joining.
    Taylor RM; Whitehouse CJ; Caldecott KW
    Nucleic Acids Res; 2000 Sep; 28(18):3558-63. PubMed ID: 10982876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 1998 Oct; 26(20):4618-25. PubMed ID: 9753729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses.
    Kanno S; Kuzuoka H; Sasao S; Hong Z; Lan L; Nakajima S; Yasui A
    EMBO J; 2007 Apr; 26(8):2094-103. PubMed ID: 17396150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different active sites of mammalian DNA ligases I and II.
    Roberts E; Nash RA; Robins P; Lindahl T
    J Biol Chem; 1994 Feb; 269(5):3789-92. PubMed ID: 8106423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination.
    Wei YF; Robins P; Carter K; Caldecott K; Pappin DJ; Yu GL; Wang RP; Shell BK; Nash RA; Schär P
    Mol Cell Biol; 1995 Jun; 15(6):3206-16. PubMed ID: 7760816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel motif in DNA ligases exemplified by DNA ligase IV.
    Marchetti C; Walker SA; Odreman F; Vindigni A; Doherty AJ; Jeggo P
    DNA Repair (Amst); 2006 Jul; 5(7):788-98. PubMed ID: 16735143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.
    Audebert M; Salles B; Calsou P
    J Biol Chem; 2004 Dec; 279(53):55117-26. PubMed ID: 15498778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three distinct DNA ligases in mammalian cells.
    Tomkinson AE; Roberts E; Daly G; Totty NF; Lindahl T
    J Biol Chem; 1991 Nov; 266(32):21728-35. PubMed ID: 1939197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1.
    Taylor RM; Wickstead B; Cronin S; Caldecott KW
    Curr Biol; 1998 Jul; 8(15):877-80. PubMed ID: 9705932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.
    Schreiber V; Amé JC; Dollé P; Schultz I; Rinaldi B; Fraulob V; Ménissier-de Murcia J; de Murcia G
    J Biol Chem; 2002 Jun; 277(25):23028-36. PubMed ID: 11948190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorella virus DNA ligase: nick recognition and mutational analysis.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 1998 Jan; 26(2):525-31. PubMed ID: 9421510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha.
    Kulczyk AW; Yang JC; Neuhaus D
    J Mol Biol; 2004 Aug; 341(3):723-38. PubMed ID: 15288782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.