BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 10419875)

  • 1. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis.
    Nagata Y; Todokoro K
    Blood; 1999 Aug; 94(3):853-63. PubMed ID: 10419875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation.
    Nagata Y; Takahashi N; Davis RJ; Todokoro K
    Blood; 1998 Sep; 92(6):1859-69. PubMed ID: 9731042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells.
    Jacobs-Helber SM; Ryan JJ; Sawyer ST
    Blood; 2000 Aug; 96(3):933-40. PubMed ID: 10910907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival.
    Wang X; Martindale JL; Liu Y; Holbrook NJ
    Biochem J; 1998 Jul; 333 ( Pt 2)(Pt 2):291-300. PubMed ID: 9657968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.
    Xia Z; Dickens M; Raingeaud J; Davis RJ; Greenberg ME
    Science; 1995 Nov; 270(5240):1326-31. PubMed ID: 7481820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct regulation of osmoprotective genes in yeast and mammals. Aldose reductase osmotic response element is induced independent of p38 and stress-activated protein kinase/Jun N-terminal kinase in rabbit kidney cells.
    Kültz D; Garcia-Perez A; Ferraris JD; Burg MB
    J Biol Chem; 1997 May; 272(20):13165-70. PubMed ID: 9148932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 kinase in calphostin C-induced apoptosis requires caspase-3-like proteases but is dispensable for cell death.
    Ozaki I; Tani E; Ikemoto H; Kitagawa H; Fujikawa H
    J Biol Chem; 1999 Feb; 274(9):5310-7. PubMed ID: 10026138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor.
    Sutherland CL; Heath AW; Pelech SL; Young PR; Gold MR
    J Immunol; 1996 Oct; 157(8):3381-90. PubMed ID: 8871635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fc gamma receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor-stimulated TNF-alpha synthesis.
    Rose DM; Winston BW; Chan ED; Riches DW; Gerwins P; Johnson GL; Henson PM
    J Immunol; 1997 Apr; 158(7):3433-8. PubMed ID: 9120304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite.
    Liu Y; Guyton KZ; Gorospe M; Xu Q; Lee JC; Holbrook NJ
    Free Radic Biol Med; 1996; 21(6):771-81. PubMed ID: 8902523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses.
    Moriguchi T; Toyoshima F; Masuyama N; Hanafusa H; Gotoh Y; Nishida E
    EMBO J; 1997 Dec; 16(23):7045-53. PubMed ID: 9384583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium.
    Chuang SM; Wang IC; Yang JL
    Carcinogenesis; 2000 Jul; 21(7):1423-32. PubMed ID: 10874022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid selectively activates the ERK2 but not JNK/SAPK or p38 MAP kinases when inducing myeloid differentiation.
    Yen A; Roberson MS; Varvayanis S
    In Vitro Cell Dev Biol Anim; 1999 Oct; 35(9):527-32. PubMed ID: 10548434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases.
    Toyoshima F; Moriguchi T; Nishida E
    J Cell Biol; 1997 Nov; 139(4):1005-15. PubMed ID: 9362518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase.
    Shirakabe K; Yamaguchi K; Shibuya H; Irie K; Matsuda S; Moriguchi T; Gotoh Y; Matsumoto K; Nishida E
    J Biol Chem; 1997 Mar; 272(13):8141-4. PubMed ID: 9079627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of protein kinase C isoforms protects RAW 264.7 macrophages from nitric oxide-induced apoptosis: involvement of c-Jun N-terminal kinase/stress-activated protein kinase, p38 kinase, and CPP-32 protease pathways.
    Jun CD; Oh CD; Kwak HJ; Pae HO; Yoo JC; Choi BM; Chun JS; Park RK; Chung HT
    J Immunol; 1999 Mar; 162(6):3395-401. PubMed ID: 10092794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative.
    Ellinger-Ziegelbauer H; Brown K; Kelly K; Siebenlist U
    J Biol Chem; 1997 Jan; 272(5):2668-74. PubMed ID: 9006902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways.
    Witt O; Sand K; Pekrun A
    Blood; 2000 Apr; 95(7):2391-6. PubMed ID: 10733512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways.
    Takekawa M; Posas F; Saito H
    EMBO J; 1997 Aug; 16(16):4973-82. PubMed ID: 9305639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes.
    Geng Y; Valbracht J; Lotz M
    J Clin Invest; 1996 Nov; 98(10):2425-30. PubMed ID: 8941662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.