BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10419976)

  • 1. Three distinct phases of isoprene formation during growth and sporulation of Bacillus subtilis.
    Wagner WP; Nemecek-Marshall M; Fall R
    J Bacteriol; 1999 Aug; 181(15):4700-3. PubMed ID: 10419976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoprene formation in Bacillus subtilis: a barometer of central carbon assimilation in a bioreactor?
    Shirk MC; Wagner WP; Fall R
    Biotechnol Prog; 2002; 18(5):1109-15. PubMed ID: 12363365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway.
    Wagner WP; Helmig D; Fall R
    J Nat Prod; 2000 Jan; 63(1):37-40. PubMed ID: 10650075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoprene synthase activity parallels fluctuations of isoprene release during growth of Bacillus subtilis.
    Sivy TL; Shirk MC; Fall R
    Biochem Biophys Res Commun; 2002 May; 294(1):71-5. PubMed ID: 12054742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of on-line CIMS for bioprocess monitoring.
    Custer TG; Wagner WP; Kato S; Bierbaum VM; Fall R
    Biotechnol Prog; 2003; 19(4):1355-64. PubMed ID: 12892502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria produce the volatile hydrocarbon isoprene.
    Kuzma J; Nemecek-Marshall M; Pollock WH; Fall R
    Curr Microbiol; 1995 Feb; 30(2):97-103. PubMed ID: 7765889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon.
    Fall R; Copley SD
    Environ Microbiol; 2000 Apr; 2(2):123-30. PubMed ID: 11220299
    [No Abstract]   [Full Text] [Related]  

  • 8. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.
    Hess BM; Xue J; Markillie LM; Taylor RC; Wiley HS; Ahring BK; Linggi B
    PLoS One; 2013; 8(6):e66104. PubMed ID: 23840410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis.
    Julsing MK; Rijpkema M; Woerdenbag HJ; Quax WJ; Kayser O
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1377-84. PubMed ID: 17458547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of various growth conditions on spore formation and bacillomycin L production in Bacillus subtilis.
    Chevanet C; Besson F; Michel G
    Can J Microbiol; 1986 Mar; 32(3):254-8. PubMed ID: 3011233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis.
    Xue J; Ahring BK
    Appl Environ Microbiol; 2011 Apr; 77(7):2399-405. PubMed ID: 21296950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extracellular protease production.
    Hageman JH; Shankweiler GW; Wall PR; Franich K; McCowan GW; Cauble SM; Grajeda J; Quinones C
    J Bacteriol; 1984 Oct; 160(1):438-41. PubMed ID: 6148336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism and mutagenicity of isoprene.
    Gervasi PG; Longo V
    Environ Health Perspect; 1990 Jun; 86():85-7. PubMed ID: 2401275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonradioactive assay for cellular dimethylallyl diphosphate.
    Fisher AJ; Rosenstiel TN; Shirk MC; Fall R
    Anal Biochem; 2001 May; 292(2):272-9. PubMed ID: 11355861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batch fermentation kinetics of acetoin produced by
    Xu H; Tian Y; Wang S; Zhu K; Zhu L; He Q; Li W; Liu J
    Prep Biochem Biotechnol; 2021; 51(10):1004-1007. PubMed ID: 33686924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achievement of complete Bacillus subtilis microcycle sporulation by the addition of S-adenosylmethionine and phospholipids.
    Petridou S; Slepecky RA
    Biochimie; 1992; 74(7-8):749-54. PubMed ID: 1391054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of isoprene in vivo.
    Dahl AR
    Toxicology; 1996 Oct; 113(1-3):273-7. PubMed ID: 8901908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glutathione S-transferase with activity towards cis-1, 2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45.
    van Hylckama Vlieg JE; Kingma J; van den Wijngaard AJ; Janssen DB
    Appl Environ Microbiol; 1998 Aug; 64(8):2800-5. PubMed ID: 9687433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-catalyzed formation of isoprene from a mevalonate-derived product using a rat liver cytosolic fraction.
    Deneris ES; Stein RA; Mead JF
    J Biol Chem; 1985 Feb; 260(3):1382-5. PubMed ID: 3968076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.
    Xu Y; Jiang Y; Li X; Sun B; Teng C; Yang R; Xiong K; Fan G; Wang W
    J Agric Food Chem; 2018 Mar; 66(12):3179-3187. PubMed ID: 29512378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.