BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10419976)

  • 21. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.
    Xu Y; Jiang Y; Li X; Sun B; Teng C; Yang R; Xiong K; Fan G; Wang W
    J Agric Food Chem; 2018 Mar; 66(12):3179-3187. PubMed ID: 29512378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sporulation in Bacillus subtilis. Effect of medium on the form of chromosome replication and on initiation to sporulation in Bacillus subtilis.
    Mandelstam J; Sterlini JM; Kay D
    Biochem J; 1971 Nov; 125(2):635-41. PubMed ID: 5004200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-genome sequencing and phenotypic analysis of Bacillus subtilis mutants following evolution under conditions of relaxed selection for sporulation.
    Brown CT; Fishwick LK; Chokshi BM; Cuff MA; Jackson JM; Oglesby T; Rioux AT; Rodriguez E; Stupp GS; Trupp AH; Woollcombe-Clarke JS; Wright TN; Zaragoza WJ; Drew JC; Triplett EW; Nicholson WL
    Appl Environ Microbiol; 2011 Oct; 77(19):6867-77. PubMed ID: 21821766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity.
    Withers ST; Gottlieb SS; Lieu B; Newman JD; Keasling JD
    Appl Environ Microbiol; 2007 Oct; 73(19):6277-83. PubMed ID: 17693564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoprene metabolism by liver microsomal mono-oxygenases.
    Del Monte M; Citti L; Gervasi PG
    Xenobiotica; 1985 Jul; 15(7):591-7. PubMed ID: 4049899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.
    Toya Y; Hirasawa T; Ishikawa S; Chumsakul O; Morimoto T; Liu S; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    Biosci Biotechnol Biochem; 2015; 79(12):2073-80. PubMed ID: 26120821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catabolite-induced repression of sporulation in Bacillus subtilis.
    Shafikhani SH; Partovi AA; Leighton T
    Curr Microbiol; 2003 Oct; 47(4):300-8. PubMed ID: 14629011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochrome c550 is related to initiation of sporulation in Bacillus subtilis.
    Shin I; Ryu HB; Yim HS; Kang SO
    J Microbiol; 2005 Jun; 43(3):244-50. PubMed ID: 15995641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Phytogenic isoprene and its ecological significance].
    Cui X; Zhao G; Liu S
    Ying Yong Sheng Tai Xue Bao; 2002 Apr; 13(4):505-9. PubMed ID: 12222064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoprene and sleep.
    Cailleux A; Allain P
    Life Sci; 1989; 44(24):1877-80. PubMed ID: 2739505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoprene synthesis by plants and animals.
    Sharkey TD
    Endeavour; 1996; 20(2):74-8. PubMed ID: 8690002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45.
    van Hylckama Vlieg JE; Kingma J; Kruizinga W; Janssen DB
    J Bacteriol; 1999 Apr; 181(7):2094-101. PubMed ID: 10094686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hepatic microsomal metabolism of isoprene in various rodents.
    Longo V; Citti L; Gervasi PG
    Toxicol Lett; 1985 Dec; 29(1):33-7. PubMed ID: 3841236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of dry-heat resistant Bacillus subtilis var. niger spores as influenced by the composition of the sporulation medium.
    Molin G; Svensson M
    Antonie Van Leeuwenhoek; 1976; 42(4):387-95. PubMed ID: 827974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis.
    Gauvry E; Mathot AG; Couvert O; Leguérinel I; Jules M; Coroller L
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An acetoin-regulated expression system of Bacillus subtilis.
    Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis.
    Tovar-Rojo F; Cabrera-Martinez RM; Setlow B; Setlow P
    J Appl Microbiol; 2003; 95(1):167-79. PubMed ID: 12807468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and chemical investigations into microbial degradation of synthetic Poly(cis-1,4-isoprene).
    Bode HB; Zeeck A; Plückhahn K; Jendrossek D
    Appl Environ Microbiol; 2000 Sep; 66(9):3680-5. PubMed ID: 10966376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catabolite repression-resistant mutants of Bacillus subtilis.
    Takahashi I
    Can J Microbiol; 1979 Nov; 25(11):1283-7. PubMed ID: 120218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.