These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10420000)

  • 1. Frequency tuning of cochlear hair cells by differential splicing of BK channel transcripts.
    Oberholtzer JC
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):629. PubMed ID: 10420000
    [No Abstract]   [Full Text] [Related]  

  • 2. Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
    Langer P; Gründer S; Rüsch A
    J Comp Neurol; 2003 Jan; 455(2):198-209. PubMed ID: 12454985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea.
    Skinner LJ; Enée V; Beurg M; Jung HH; Ryan AF; Hafidi A; Aran JM; Dulon D
    J Neurophysiol; 2003 Jul; 90(1):320-32. PubMed ID: 12611976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits.
    Pyott SJ; Meredith AL; Fodor AA; Vázquez AE; Yamoah EN; Aldrich RW
    J Biol Chem; 2007 Feb; 282(5):3312-24. PubMed ID: 17135251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization and developmental expression of BK channels in mammalian cochlear hair cells.
    Hafidi A; Beurg M; Dulon D
    Neuroscience; 2005; 130(2):475-84. PubMed ID: 15664704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea.
    Jones EM; Gray-Keller M; Fettiplace R
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):653-65. PubMed ID: 10420004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of hair cell tuning.
    Fettiplace R; Fuchs PA
    Annu Rev Physiol; 1999; 61():809-34. PubMed ID: 10099711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular mechanism for electrical tuning of cochlear hair cells.
    Ramanathan K; Michael TH; Jiang GJ; Hiel H; Fuchs PA
    Science; 1999 Jan; 283(5399):215-7. PubMed ID: 9880252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonotopic variations of calcium signalling in turtle auditory hair cells.
    Ricci AJ; Gray-Keller M; Fettiplace R
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):423-36. PubMed ID: 10766923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels.
    Nemzou N RM; Bulankina AV; Khimich D; Giese A; Moser T
    Neuroscience; 2006 Sep; 141(4):1849-60. PubMed ID: 16828974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing.
    Rüsch A; Erway LC; Oliver D; Vennström B; Forrest D
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15758-62. PubMed ID: 9861043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea.
    Navaratnam DS; Bell TJ; Tu TD; Cohen EL; Oberholtzer JC
    Neuron; 1997 Nov; 19(5):1077-85. PubMed ID: 9390520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear Translocation Triggered at the Onset of Hearing in Cochlear Inner Hair Cells of Rats and Mice.
    Iyer MR; Kalluri R
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):291-303. PubMed ID: 36932316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative splicing of inner-ear-expressed genes.
    Wang Y; Liu Y; Nie H; Ma X; Xu Z
    Front Med; 2016 Sep; 10(3):250-7. PubMed ID: 27376950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivating potassium currents in apical and basal turn inner hair cells from guinea-pig cochlea.
    Kimitsuki T; Nawate A; Kakazu Y; Matsumoto N; Takaiwa K; Komune N; Noda T; Komune S
    Brain Res; 2008 Sep; 1228():68-72. PubMed ID: 18619421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells.
    Pyott SJ; Glowatzki E; Trimmer JS; Aldrich RW
    J Neurosci; 2004 Oct; 24(43):9469-74. PubMed ID: 15509733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSlo encodes calcium-activated potassium channels in the chick's cochlea.
    Jiang GJ; Zidanic M; Michaels RL; Michael TH; Griguer C; Fuchs PA
    Proc Biol Sci; 1997 May; 264(1382):731-7. PubMed ID: 9178544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A voltage- and Ca2+-dependent big conductance K channel in cochlear spiral ligament fibrocytes.
    Liang F; Niedzielski A; Schulte BA; Spicer SS; Hazen-Martin DJ; Shen Z
    Pflugers Arch; 2003 Mar; 445(6):683-92. PubMed ID: 12632188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells.
    Beurg M; Evans MG; Hackney CM; Fettiplace R
    J Neurosci; 2006 Oct; 26(43):10992-1000. PubMed ID: 17065441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea.
    Rosenblatt KP; Sun ZP; Heller S; Hudspeth AJ
    Neuron; 1997 Nov; 19(5):1061-75. PubMed ID: 9390519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.