BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10420596)

  • 1. Large-scale production of N-acetyllactosamine through bacterial coupling.
    Endo T; Koizumi S; Tabata K; Kakita S; Ozaki A
    Carbohydr Res; 1999 Mar; 316(1-4):179-83. PubMed ID: 10420596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria.
    Koizumi S; Endo T; Tabata K; Ozaki A
    Nat Biotechnol; 1998 Sep; 16(9):847-50. PubMed ID: 9743118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling.
    Endo T; Koizumi S; Tabata K; Ozaki A
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):257-61. PubMed ID: 10772462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale production of the carbohydrate portion of the sialyl-Tn epitope, alpha-Neup5Ac-(2-->6)-D-GalpNAc, through bacterial coupling.
    Endo T; Koizumi S; Tabata K; Kakita S; Ozaki A
    Carbohydr Res; 2001 Feb; 330(4):439-43. PubMed ID: 11269395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GALT deficiency causes UDP-hexose deficit in human galactosemic cells.
    Lai K; Langley SD; Khwaja FW; Schmitt EW; Elsas LJ
    Glycobiology; 2003 Apr; 13(4):285-94. PubMed ID: 12626383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast.
    Lai K; Elsas LJ
    Biochem Biophys Res Commun; 2000 May; 271(2):392-400. PubMed ID: 10799308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expression of beta1,4-galactosyltransferase gene from Helicobacter pylori.
    Endo T; Koizumi S; Tabata K; Ozaki A
    Glycobiology; 2000 Aug; 10(8):809-13. PubMed ID: 10929007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. En route to deoxygenated N-acetyllactosamine analogues employing uridyl and galactosyl transferases.
    Lazarevic D; Streicher H; Thiem J
    Carbohydr Res; 2009 Aug; 344(12):1449-52. PubMed ID: 19560126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives.
    Zou Y; Xue M; Wang W; Cai L; Chen L; Liu J; Wang PG; Shen J; Chen M
    Carbohydr Res; 2013 May; 373():76-81. PubMed ID: 23584237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs.
    Ortiz-Soto ME; Baier M; Brenner D; Timm M; Seibel J
    Glycobiology; 2023 Oct; 33(8):651-660. PubMed ID: 37283491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis.
    Damerow S; Hoppe C; Bandini G; Zarnovican P; Buettner FF; Ferguson MA; Routier FH
    Int J Parasitol; 2015 Oct; 45(12):783-90. PubMed ID: 26215058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes.
    Mollet B; Pilloud N
    J Bacteriol; 1991 Jul; 173(14):4464-73. PubMed ID: 2066342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in N-acetyllactosamine synthesis between beta-1,4-galactosyltransferases I and V.
    Sato T; Furukawa K
    Glycoconj J; 1999 Jan; 16(1):73-6. PubMed ID: 10580653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic production of pyrimidine nucleotides using Corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: enzymatic production of CDP-choline from orotic acid and choline chloride (Part I).
    Fujio T; Maruyama A
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):956-9. PubMed ID: 9214753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of N-acetyllactosamine from lactose enabled by recombinant β1,4-galactosyltransferases.
    Huang K; Parmeggiani F; Ledru H; Hollingsworth K; Mas Pons J; Marchesi A; Both P; Mattey AP; Pallister E; Bulmer GS; van Munster JM; Turnbull WB; Galan MC; Flitsch SL
    Org Biomol Chem; 2019 Jun; 17(24):5920-5924. PubMed ID: 31165848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The occurrence of the Leloir pathway in non-pathogenic mycobacteria.
    Szumiło T
    Acta Microbiol Pol; 1981; 30(4):327-33. PubMed ID: 6179392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GalR Acts as a Transcriptional Activator of galKT in the Presence of Galactose in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Manzoor I; Kuipers OP
    J Mol Microbiol Biotechnol; 2015; 25(6):363-71. PubMed ID: 26544195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression and purification of the galactose operon enzymes from Escherichia coli.
    Vorgias CE; Lemaire HG; Wilson KS
    Protein Expr Purif; 1991; 2(5-6):330-8. PubMed ID: 1821806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.
    Jónás Á; Fekete E; Németh Z; Flipphi M; Karaffa L
    Acta Biol Hung; 2016 Sep; 67(3):318-32. PubMed ID: 27630054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of galactosemia - Past, present and future.
    Timson DJ
    Gene; 2016 Sep; 589(2):133-41. PubMed ID: 26143117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.