These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10420627)

  • 1. Discrimination of frequency steps linked by glides of various durations.
    Sek A; Moore BC
    J Acoust Soc Am; 1999 Jul; 106(1):351-9. PubMed ID: 10420627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of frequency glides with superimposed random glides in level.
    Moore BC; Sek A
    J Acoust Soc Am; 1998 Jul; 104(1):411-21. PubMed ID: 9670533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and discrimination of frequency glides as a function of direction, duration, frequency span, and center frequency.
    Madden JP; Fire KM
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2920-4. PubMed ID: 9373978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of nonlinear frequency glides.
    Thyer N; Mahar D
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):2929-36. PubMed ID: 16708950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection, direction discrimination, and off-frequency interference of center-frequency modulations and glides for vowel formants.
    Lyzenga J; Carlyon RP
    J Acoust Soc Am; 2005 May; 117(5):3042-53. PubMed ID: 15957773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of real and illusory glides on pure-tone frequency discrimination.
    Lyzenga J; Carlyon RP; Moore BC
    J Acoust Soc Am; 2004 Jul; 116(1):491-501. PubMed ID: 15296008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and discrimination of gliding tones as a function of frequency transition and center frequency.
    Madden JP; Fire KM
    J Acoust Soc Am; 1996 Dec; 100(6):3754-60. PubMed ID: 8969476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glide slope, noise intensity, and noise duration on the extrapolation of FM glides through noise.
    Kluender KR; Jenison RL
    Percept Psychophys; 1992 Mar; 51(3):231-8. PubMed ID: 1561048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An auditory basis for the stimulus-length effect in the perception of stops and glides.
    Diehl RL; Walsh MA
    J Acoust Soc Am; 1989 May; 85(5):2154-64. PubMed ID: 2732389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of temporal proximity between sound edges in the perceptual organization of veridical and illusory auditory events.
    Nakajima Y; Remijn GB; Kamimura Y; Kanafuka K
    Hear Res; 2022 Sep; 422():108546. PubMed ID: 35660125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tone-glide discrimination: normal and hearing-impaired listeners.
    Collins MJ
    J Speech Hear Res; 1984 Sep; 27(3):403-12. PubMed ID: 6482410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal summation of constant and gliding tones at masked auditory threshold.
    Nábĕlek IV
    J Acoust Soc Am; 1978 Sep; 64(3):751-63. PubMed ID: 701614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for an explanation for diphthong perception: dynamic tones and dynamic spectral profiles.
    Schouten ME; Peeters WJ
    Phonetica; 2000; 57(1):17-39. PubMed ID: 10867569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency glide discrimination in the F2 region by normal-hearing and hearing-impaired listeners.
    Summers V; Leek MR
    J Acoust Soc Am; 1995 Jun; 97(6):3825-32. PubMed ID: 7790660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Audibility of short-duration tone-glides as a function of rate of frequency change.
    Cullen JK; Collins MJ
    Hear Res; 1982 May; 7(1):115-25. PubMed ID: 7096215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of excitation-pattern cues and temporal cues in the frequency and modulation-rate discrimination of amplitude-modulated tones.
    Micheyl C; Moore BC; Carlyon RP
    J Acoust Soc Am; 1998 Aug; 104(2 Pt 1):1039-50. PubMed ID: 9714923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence of acoustic invariance in speech production: the stop-glide contrast.
    Mack M; Blumstein SE
    J Acoust Soc Am; 1983 May; 73(5):1739-50. PubMed ID: 6863753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and intensity discrimination of Gaussian-shaped tone pulses as a function of duration.
    Baer T; Moore BC; Glasberg BR
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1907-16. PubMed ID: 10530015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formant transition duration and amplitude rise time as cues to the stop/glide distinction.
    Walsh MA; Diehl RL
    Q J Exp Psychol A; 1991 Aug; 43(3):603-20. PubMed ID: 1775659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.