BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10421436)

  • 1. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization.
    Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S
    Chem Biol Interact; 1999 May; 119-120():29-42. PubMed ID: 10421436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional control of different acetylcholinesterase subunits in formation and maintenance of vertebrate neuromuscular junctions.
    Tsim KW; Xie HQ; Ting AK; Siow NL; Ling KK; Kong LW
    J Mol Neurosci; 2006; 30(1-2):189-92. PubMed ID: 17192673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms.
    Duval N; Massoulié J; Bon S
    J Cell Biol; 1992 Aug; 118(3):641-53. PubMed ID: 1639848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization.
    Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S
    J Physiol Paris; 1998; 92(3-4):183-90. PubMed ID: 9789805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimerization domain of the collagen tail of acetylcholinesterase.
    Bon S; Ayon A; Leroy J; Massoulié J
    Neurochem Res; 2003 Apr; 28(3-4):523-35. PubMed ID: 12675141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mammalian gene of acetylcholinesterase-associated collagen.
    Krejci E; Thomine S; Boschetti N; Legay C; Sketelj J; Massoulié J
    J Biol Chem; 1997 Sep; 272(36):22840-7. PubMed ID: 9278446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E; Bernard V; Camp S; Taylor P; Krejci E; Molgó J
    J Mol Neurosci; 2006; 30(1-2):99-100. PubMed ID: 17192646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail.
    Bon S; Coussen F; Massoulié J
    J Biol Chem; 1997 Jan; 272(5):3016-21. PubMed ID: 9006950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis.
    Zhang D; McCammon JA
    PLoS Comput Biol; 2005 Nov; 1(6):e62. PubMed ID: 16299589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S
    Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA.
    Noureddine H; Carvalho S; Schmitt C; Massoulié J; Bon S
    J Biol Chem; 2008 Jul; 283(30):20722-32. PubMed ID: 18511416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction.
    Rotundo RL; Ruiz CA; Marrero E; Kimbell LM; Rossi SG; Rosenberry T; Darr A; Tsoulfas P
    Chem Biol Interact; 2008 Sep; 175(1-3):26-9. PubMed ID: 18599029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix.
    Dvir H; Harel M; Bon S; Liu WQ; Vidal M; Garbay C; Sussman JL; Massoulié J; Silman I
    EMBO J; 2004 Nov; 23(22):4394-405. PubMed ID: 15526038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.
    Simon S; Krejci E; Massoulié J
    EMBO J; 1998 Nov; 17(21):6178-87. PubMed ID: 9799227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction.
    Nakata T; Ito M; Azuma Y; Otsuka K; Noguchi Y; Komaki H; Okumura A; Shiraishi K; Masuda A; Natsume J; Kojima S; Ohno K
    Hum Mutat; 2013 Jul; 34(7):997-1004. PubMed ID: 23553736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting acetylcholinesterase to the neuromuscular synapse.
    Rotundo RL; Rossi SG; Kimbell LM; Ruiz C; Marrero E
    Chem Biol Interact; 2005 Dec; 157-158():15-21. PubMed ID: 16289417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme.
    Ohno K; Brengman J; Tsujino A; Engel AG
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9654-9. PubMed ID: 9689136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of acetylcholinesterase tetramers by peptidic motifs from the proline-rich membrane anchor, PRiMA: competition between degradation and secretion pathways of heteromeric complexes.
    Noureddine H; Schmitt C; Liu W; Garbay C; Massoulié J; Bon S
    J Biol Chem; 2007 Feb; 282(6):3487-97. PubMed ID: 17158452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.