These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10421729)

  • 21. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.
    Attama AA; Schicke BC; Paepenmüller T; Müller-Goymann CC
    Eur J Pharm Biopharm; 2007 Aug; 67(1):48-57. PubMed ID: 17276663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tri-block copolymer templated synthesis of gold nanostructures.
    Falletta E; Ridi F; Fratini E; Vannucci C; Canton P; Bianchi S; Castelvetro V; Baglioni P
    J Colloid Interface Sci; 2011 May; 357(1):88-94. PubMed ID: 21334634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions.
    Nassar NN; Husein MM
    Langmuir; 2007 Dec; 23(26):13093-103. PubMed ID: 18004891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of Shell-Core Cu(2)O-Cu Nanocomposite Particles and Cu Nanoparticles in a New Microemulsion System.
    Wang CY; Zhou Y; Chen ZY; Cheng B; Liu HJ; Mo X
    J Colloid Interface Sci; 1999 Dec; 220(2):468-470. PubMed ID: 10607468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition.
    Lo SH; Wang YY; Wan CC
    J Colloid Interface Sci; 2007 Jun; 310(1):190-5. PubMed ID: 17320894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse micelle synthesis of rhodium nanoparticles.
    Hoefelmeyer JD; Liu H; Somorjai GA; Tilley TD
    J Colloid Interface Sci; 2007 May; 309(1):86-93. PubMed ID: 17229435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions.
    Wu SH; Chen DH
    J Colloid Interface Sci; 2004 May; 273(1):165-9. PubMed ID: 15051447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of crystalline gold nanoparticles at the surface of mixed phosphatidylcholine-ionic surfactant vesicles.
    Robertson D; Tiersch B; Kosmella S; Koetz J
    J Colloid Interface Sci; 2007 Jan; 305(2):345-51. PubMed ID: 17069829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the Solvent on the Water Properties of Water/Oil Microemulsions.
    González-Blanco C; Rodríguez LJ; Velázquez MM
    J Colloid Interface Sci; 1999 Mar; 211(2):380-386. PubMed ID: 10049554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions.
    Husein MM; Rodil E; Vera JH
    Langmuir; 2006 Feb; 22(5):2264-72. PubMed ID: 16489816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts.
    Jiang L; Sun G; Zhou Z; Sun S; Wang Q; Yan S; Li H; Tian J; Guo J; Zhou B; Xin Q
    J Phys Chem B; 2005 May; 109(18):8774-8. PubMed ID: 16852041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-angle X-ray scattering (SAXS) study on nonionic fluorinated micelles in aqueous system.
    Shrestha LK; Sharma SC; Sato T; Glatter O; Aramaki K
    J Colloid Interface Sci; 2007 Dec; 316(2):815-24. PubMed ID: 17765914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Growth of Gold Nanoparticles in Aerosol-OT/Sorbitan Monooleate/Isooctane Mixed Reverse Micelles.
    Chiang CL
    J Colloid Interface Sci; 2000 Oct; 230(1):60-66. PubMed ID: 10998288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Cubic-Phase Microemulsions with Anionic and Cationic Surfactants at Equal Amounts of Oil and Water.
    Li X; Kunieda H
    J Colloid Interface Sci; 2000 Nov; 231(1):143-151. PubMed ID: 11082258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant--polymer aggregates formed by sodium dodecyl sulfate, poly(N-vinyl-2-pyrrolidone), and poly(ethylene glycol).
    Romani AP; Gehlen MH; Itri R
    Langmuir; 2005 Jan; 21(1):127-33. PubMed ID: 15620293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Cryo-TEM Study of Protein-Surfactant Gels and Solutions.
    Morén AK; Regev O; Khan A
    J Colloid Interface Sci; 2000 Feb; 222(2):170-178. PubMed ID: 10662512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes.
    Narayanan J; Abdul Rasheed AS; Bellare JR
    J Colloid Interface Sci; 2008 Dec; 328(1):67-72. PubMed ID: 18829038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles.
    Najjar R; Stubenrauch C
    J Colloid Interface Sci; 2009 Mar; 331(1):214-20. PubMed ID: 19058812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles.
    Kim YH; Lee DK; Cha HG; Kim CW; Kang YC; Kang YS
    J Phys Chem B; 2006 Dec; 110(49):24923-8. PubMed ID: 17149913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.