BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10421880)

  • 1. Free electron laser infrared wavelength specificity for cutaneous contraction.
    Ellis DL; Weisberg NK; Chen JS; Stricklin GP; Reinisch L
    Lasers Surg Med; 1999; 25(1):1-7. PubMed ID: 10421880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective laser ablation of bone based on the absorption characteristics of water and proteins.
    Spencer P; Payne JM; Cobb CM; Reinisch L; Peavy GM; Drummer DD; Suchman DL; Swafford JR
    J Periodontol; 1999 Jan; 70(1):68-74. PubMed ID: 10052773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.
    Weisberg NK; Kuo T; Torkian B; Reinisch L; Ellis DL
    Arch Dermatol; 1998 Oct; 134(10):1223-8. PubMed ID: 9801677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen thermal damage and collagen synthesis after cutaneous laser resurfacing.
    Kuo T; Speyer MT; Ries WR; Reinisch L
    Lasers Surg Med; 1998; 23(2):66-71. PubMed ID: 9738540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of carbon dioxide laser, erbium:YAG laser, dermabrasion, and dermatome: a study of thermal damage, wound contraction, and wound healing in a live pig model: implications for skin resurfacing.
    Ross EV; Naseef GS; McKinlay JR; Barnette DJ; Skrobal M; Grevelink J; Anderson RR
    J Am Acad Dermatol; 2000 Jan; 42(1 Pt 1):92-105. PubMed ID: 10607327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin contraction following erbium:YAG laser resurfacing.
    Hughes PS
    Dermatol Surg; 1998 Jan; 24(1):109-11. PubMed ID: 9464298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectra from 2.5-15 microm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin.
    Viator JA; Choi B; Peavy GM; Kimel S; Nelson JS
    Phys Med Biol; 2003 Jan; 48(2):N15-24. PubMed ID: 12587910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers.
    Mackanos MA; Jansen ED; Shaw BL; Sanghera JS; Aggarwal I; Katzir A
    J Biomed Opt; 2003 Oct; 8(4):583-93. PubMed ID: 14563195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics.
    Mackanos MA; Kozub JA; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1871-83. PubMed ID: 15815101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin.
    Wilmink GJ; Opalenik SR; Beckham JT; Mackanos MA; Nanney LB; Contag CH; Davidson JM; Jansen ED
    J Biomed Opt; 2008; 13(5):054066. PubMed ID: 19021444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength-dependent collagen fragmentation during mid-IR laser ablation.
    Xiao Y; Guo M; Parker K; Hutson MS
    Biophys J; 2006 Aug; 91(4):1424-32. PubMed ID: 16714345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ablative skin resurfacing.
    Chwalek J; Goldberg DJ
    Curr Probl Dermatol; 2011; 42():40-47. PubMed ID: 21865797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser skin resurfacing of the face with a combined CO2/Er:YAG laser.
    Goldman MP; Marchell N; Fitzpatrick RE
    Dermatol Surg; 2000 Feb; 26(2):102-4. PubMed ID: 10691935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pulsed CO2 laser ablation at 10.6 microm and 9.5 microm.
    Payne BP; Nishioka NS; Mikic BB; Venugopalan V
    Lasers Surg Med; 1998; 23(1):1-6. PubMed ID: 9694144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of inflammatory infiltrate and linear contraction in human skin treated with 90-microsecond pulsed and 900-microsecond dwell time carbon dioxide lasers.
    Bucalo BD; Moy RL
    Dermatol Surg; 1998 Dec; 24(12):1314-6. PubMed ID: 9865195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 microm.
    Peavy GM; Reinisch L; Payne JT; Venugopalan V
    Lasers Surg Med; 1999; 25(5):421-34. PubMed ID: 10602135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.