These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10422223)

  • 1. High-density Escherichia coli cultures for continuous L(-)-carnitine production.
    Obón JM; Maiquez JR; Cánovas M; Kleber HP; Iborra JL
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):760-4. PubMed ID: 10422223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of D(+)-carnitine into L(-)-carnitine by resting cells of Escherichia coli O44 K74.
    Castellar MR; Cánovas M; Kleber HP; Iborra JL
    J Appl Microbiol; 1998 Nov; 85(5):883-90. PubMed ID: 9830124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the biotransformation of crotonobetaine into L-(-)-carnitine by Escherichia coli strains.
    Canovas M; Maiquez JR; Obón JM; Iborra JL
    Biotechnol Bioeng; 2002 Mar; 77(7):764-75. PubMed ID: 11835137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds by escherichia coli.
    Cánovas M; Bernal V; Torroglosa T; Ramirez JL; Iborra JL
    Biotechnol Bioeng; 2003 Dec; 84(6):686-99. PubMed ID: 14595781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt stress effects on the central and carnitine metabolisms of Escherichia coli.
    Cánovas M; Bernal V; Sevilla A; Torroglosa T; Iborra JL
    Biotechnol Bioeng; 2007 Mar; 96(4):722-37. PubMed ID: 16894634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli.
    Cánovas M; Sevilla A; Bernal V; Leal R; Iborra JL
    Metab Eng; 2006 Nov; 8(6):603-18. PubMed ID: 16904359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli.
    Elssner T; Engemann C; Baumgart K; Kleber HP
    Biochemistry; 2001 Sep; 40(37):11140-8. PubMed ID: 11551212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp.
    Engemann C; Elssner T; Kleber HP
    Arch Microbiol; 2001 May; 175(5):353-9. PubMed ID: 11409545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crotonobetaine reductase from Escherichia coli consists of two proteins.
    Preusser A; Wagner U; Elssner T; Kleber HP
    Biochim Biophys Acta; 1999 Apr; 1431(1):166-78. PubMed ID: 10209289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in Escherichia coli.
    Bernal V; Arense P; Blatz V; Mandrand-Berthelot MA; Cánovas M; Iborra JL
    J Appl Microbiol; 2008 Jul; 105(1):42-50. PubMed ID: 18266698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic regulation of carnitine metabolising enzymes in Proteus sp. under aerobic conditions.
    Engemann C; Kleber HP
    FEMS Microbiol Lett; 2001 Mar; 196(1):1-6. PubMed ID: 11257539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of carnitine dehydratase from Escherichia coli--a new enzyme of carnitine metabolization.
    Jung H; Jung K; Kleber HP
    Biochim Biophys Acta; 1989 Jun; 1003(3):270-6. PubMed ID: 2663076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures.
    Alvarez-Vasquez F; Cánovas M; Iborra JL; Torres NV
    Biotechnol Bioeng; 2002 Dec; 80(7):794-805. PubMed ID: 12402325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, identification, and synthesis of gamma-butyrobetainyl-CoA and crotonobetainyl-CoA, compounds involved in carnitine metabolism of E. coli.
    Elssner T; Hennig L; Frauendorf H; Haferburg D; Kleber HP
    Biochemistry; 2000 Sep; 39(35):10761-9. PubMed ID: 10978161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli.
    Cánovas M; Torroglosa T; Kleber HP; Iborra JL
    J Basic Microbiol; 2003; 43(4):259-68. PubMed ID: 12872307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-carnitine metabolization and osmotic stress response in Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(6):409-13. PubMed ID: 2280345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-carnitine uptake by Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(7):507-14. PubMed ID: 2266491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli. Integration of the metabolic and bioreactor levels.
    Sevilla A; Vera J; Díaz Z; Cánovas M; Torres NV; Iborra JL
    Biotechnol Prog; 2005; 21(2):329-37. PubMed ID: 15801767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crotonobetaine reductase from Escherichia coli--a new inducible enzyme of anaerobic metabolization of L(-)-carnitine.
    Roth S; Jung K; Jung H; Hommel RK; Kleber HP
    Antonie Van Leeuwenhoek; 1994; 65(1):63-9. PubMed ID: 8060125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli.
    Eichler K; Bourgis F; Buchet A; Kleber HP; Mandrand-Berthelot MA
    Mol Microbiol; 1994 Sep; 13(5):775-86. PubMed ID: 7815937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.