These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10422224)

  • 1. Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining.
    Gorenflo V; Steinbüchel A; Marose S; Rieseberg M; Scheper T
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):765-72. PubMed ID: 10422224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds.
    Spiekermann P; Rehm BH; Kalscheuer R; Baumeister D; Steinbüchel A
    Arch Microbiol; 1999 Jan; 171(2):73-80. PubMed ID: 9914303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate.
    Ostle AG; Holt JG
    Appl Environ Microbiol; 1982 Jul; 44(1):238-41. PubMed ID: 6181737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Staining and quantification of poly-3-hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow cytometry.
    Kacmar J; Carlson R; Balogh SJ; Srienc F
    Cytometry A; 2006 Jan; 69(1):27-35. PubMed ID: 16342115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence microscopical investigation of poly(3-hydroxybutyrate) granule formation in bacteria.
    Jendrossek D
    Biomacromolecules; 2005; 6(2):598-603. PubMed ID: 15762619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nile blue A for staining Escherichia coli in flow cytometer experiments.
    Betscheider D; Jose J
    Anal Biochem; 2009 Jan; 384(1):194-6. PubMed ID: 18835376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantified high-throughput screening of Escherichia coli producing poly(3-hydroxybutyrate) based on FACS.
    Lee JH; Lee SH; Yim SS; Kang KH; Lee SY; Park SJ; Jeong KJ
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1767-79. PubMed ID: 23740474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803.
    Tyo KE; Zhou H; Stephanopoulos GN
    Appl Environ Microbiol; 2006 May; 72(5):3412-7. PubMed ID: 16672485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum.
    Jendrossek D; Selchow O; Hoppert M
    Appl Environ Microbiol; 2007 Jan; 73(2):586-93. PubMed ID: 17085698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry feedback control for synthesis of polyhydroxyalkanoate granule microstructures in Ralstonia eutropha.
    Pederson EN; Srienc F
    Macromol Biosci; 2004 Mar; 4(3):243-54. PubMed ID: 15468214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of polyphosphate and poly-beta-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge.
    Rees GN; Vasiliadis G; May JW; Bayly RC
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):171-3. PubMed ID: 1521766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopical investigation of poly(3-hydroxybutyrate) granule formation in Azotobacter vinelandii.
    Hermawan S; Jendrossek D
    FEMS Microbiol Lett; 2007 Jan; 266(1):60-4. PubMed ID: 17233718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry.
    Alves LP; Almeida AT; Cruz LM; Pedrosa FO; de Souza EM; Chubatsu LS; Müller-Santos M; Valdameri G
    Braz J Med Biol Res; 2017 Jan; 50(1):e5492. PubMed ID: 28099582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrofluorometric studies of the lipid probe, nile red.
    Greenspan P; Fowler SD
    J Lipid Res; 1985 Jul; 26(7):781-9. PubMed ID: 4031658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection by nile red of agarose gel electrophoresed native and modified low density lipoprotein.
    Greenspan P; Gutman RL
    Electrophoresis; 1993; 14(1-2):65-8. PubMed ID: 8462517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of a Nile Red method for rapid lipid determination in autotrophic, marine microalgae is species dependent.
    Balduyck L; Veryser C; Goiris K; Bruneel C; Muylaert K; Foubert I
    J Microbiol Methods; 2015 Nov; 118():152-8. PubMed ID: 26388510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid differentiation between short-chain-length and medium-chain-length polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry.
    Wu HA; Sheu DS; Lee CY
    J Microbiol Methods; 2003 Apr; 53(1):131-5. PubMed ID: 12609733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae.
    Chen W; Zhang C; Song L; Sommerfeld M; Hu Q
    J Microbiol Methods; 2009 Apr; 77(1):41-7. PubMed ID: 19162091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of poly(3-hydroxybutyrate) depolymerase and 3HB-oligomer hydrolase in bacterial PHB metabolism.
    Sugiyama A; Kobayashi T; Shiraki M; Saito T
    Curr Microbiol; 2004 Jun; 48(6):424-7. PubMed ID: 15170237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.