BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10422845)

  • 1. Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding.
    Fariselli P; Bottoni A; Bernardi F; Casadio R
    Protein Sci; 1999 Jul; 8(7):1546-50. PubMed ID: 10422845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.
    Magnus KA; Hazes B; Ton-That H; Bonaventura C; Bonaventura J; Hol WG
    Proteins; 1994 Aug; 19(4):302-9. PubMed ID: 7984626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-site disruption in native Limulus hemocyanin and its subunits by disulfide-bond reductants: a chemical probe for the study of structure-function relationships in the hemocyanins.
    Topham R; Tesh S; Cole G; Mercatante D; Westcott A; Bonaventura C
    Arch Biochem Biophys; 1998 Apr; 352(1):103-13. PubMed ID: 9521822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexamers of subunit II from Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules.
    Magnus KA; Lattman EE; Volbeda A; Hol WG
    Proteins; 1991; 9(4):240-7. PubMed ID: 1866430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate binding to Limulus polyphemus subunit type II hemocyanin and its functional implications.
    Hazes B; Magnus KA; Kalk KH; Bonaventura C; Hol WG
    J Mol Biol; 1996 Oct; 262(4):532-41. PubMed ID: 8893861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: clues for a mechanism for allosteric regulation.
    Hazes B; Magnus KA; Bonaventura C; Bonaventura J; Dauter Z; Kalk KH; Hol WG
    Protein Sci; 1993 Apr; 2(4):597-619. PubMed ID: 8518732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity.
    Perbandt M; Guthöhrlein EW; Rypniewski W; Idakieva K; Stoeva S; Voelter W; Genov N; Betzel C
    Biochemistry; 2003 Jun; 42(21):6341-6. PubMed ID: 12767214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a functional unit from Octopus hemocyanin.
    Cuff ME; Miller KI; van Holde KE; Hendrickson WA
    J Mol Biol; 1998 May; 278(4):855-70. PubMed ID: 9614947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual oxygen binding behavior of a 24-meric crustacean hemocyanin.
    Hellmann N; Paoli M; Giomi F; Beltramini M
    Arch Biochem Biophys; 2010 Mar; 495(2):112-21. PubMed ID: 20051224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of effector binding to hemocyanin: influence of temperature.
    Pott A; Menze MA; Grieshaber MK
    Arch Biochem Biophys; 2009 Mar; 483(1):37-44. PubMed ID: 19141291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals.
    Mozzarelli A; Rivetti C; Rossi GL; Eaton WA; Henry ER
    Protein Sci; 1997 Feb; 6(2):484-9. PubMed ID: 9041656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the X-ray absorption properties of the binuclear active site of molluscan and arthropodan hemocyanins.
    Sabatucci A; Ascone I; Bubacco L; Beltramini M; Muro D; Salvato B
    J Biol Inorg Chem; 2002 Jan; 7(1-2):120-8. PubMed ID: 11862548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternary structure and functional properties of Penaeus monodon hemocyanin.
    Beltramini M; Colangelo N; Giomi F; Bubacco L; Di Muro P; Hellmann N; Jaenicke E; Decker H
    FEBS J; 2005 Apr; 272(8):2060-75. PubMed ID: 15819896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of arthropodan hemocyanin Limulus polyphemus.
    Dolashka-Angelova P; Dolashki A; Stevanovic S; Hristova R; Atanasov B; Nikolov P; Voelter W
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1207-17. PubMed ID: 15741123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond reduction: A powerful, chemical probe for the study of structure-function relationships in the hemocyanins.
    Topham R; Tesh S; Westcott A; Cole G; Mercatante D; Kaufman G; Bonaventura C
    Arch Biochem Biophys; 1999 Sep; 369(2):261-6. PubMed ID: 10486145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limulus polyphemus hemocyanin: 10 A cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers.
    Martin AG; Depoix F; Stohr M; Meissner U; Hagner-Holler S; Hammouti K; Burmester T; Heyd J; Wriggers W; Markl J
    J Mol Biol; 2007 Mar; 366(4):1332-50. PubMed ID: 17207812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin.
    Brouwer M; Bonaventura C; Bonaventura J
    Prog Clin Biol Res; 1982; 81():231-56. PubMed ID: 6289351
    [No Abstract]   [Full Text] [Related]  

  • 18. Bohr-effect and buffering capacity of hemocyanin from the tarantula E. californicum.
    Hellmann N
    Biophys Chem; 2004 Apr; 109(1):157-67. PubMed ID: 15059668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interhexameric contacts in the four-hexameric hemocyanin from the tarantula Eurypelma californicum. A tentative mechanism for cooperative behavior.
    de Haas F; van Bruggen EF
    J Mol Biol; 1994 Apr; 237(4):464-78. PubMed ID: 8151706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.
    Saito T; Thiel W
    J Phys Chem B; 2014 May; 118(19):5034-43. PubMed ID: 24762083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.