These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10423241)

  • 21. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A proton nuclear magnetic resonance investigation of histidine-binding protein J of Salmonella typhimurium: a model for transport of L-histidine across cytoplasmic membrane.
    Ho C; Giza Y; Takahashi S; Ugen KE; Cottam PF; Dowd SR
    J Supramol Struct; 1980; 13(2):131-45. PubMed ID: 7017276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-directed sulfhydryl labeling of helix IX in the lactose permease of Escherichia coli.
    Zhang W; Hu Y; Kaback HR
    Biochemistry; 2003 May; 42(17):4904-8. PubMed ID: 12718531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The lactose transport protein is a cooperative dimer with two sugar translocation pathways.
    Veenhoff LM; Heuberger EH; Poolman B
    EMBO J; 2001 Jun; 20(12):3056-62. PubMed ID: 11406582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The kamikaze approach to membrane transport.
    Kaback HR; Sahin-Tóth M; Weinglass AB
    Nat Rev Mol Cell Biol; 2001 Aug; 2(8):610-20. PubMed ID: 11483994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus.
    Knol J; Veenhoff L; Liang WJ; Henderson PJ; Leblanc G; Poolman B
    J Biol Chem; 1996 Jun; 271(26):15358-66. PubMed ID: 8662938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for structural symmetry and functional asymmetry in the lactose permease of Escherichia coli.
    Green AL; Hrodey HA; Brooker RJ
    Biochemistry; 2003 Sep; 42(38):11226-33. PubMed ID: 14503872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR.
    Patching SG; Psakis G; Baldwin SA; Baldwin J; Henderson PJ; Middleton DA
    Mol Membr Biol; 2008 Sep; 25(6-7):474-84. PubMed ID: 18798051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural-dynamical properties of the transmembrane segment VI of the mitochondrial oxoglutarate carrier studied by site directed spin-labeling.
    Lauria G; Sanchez P; Della Rocca BM; Pierri CL; Polizio F; Stipani I; Desideri A
    Mol Membr Biol; 2008 Apr; 25(3):236-44. PubMed ID: 18428039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulating conformational equilibria in the lactose permease of Escherichia coli.
    Weinglass AB; Sondej M; Kaback HR
    J Mol Biol; 2002 Jan; 315(4):561-71. PubMed ID: 11812130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural biology. Breaching the barrier.
    Locher KP; Bass RB; Rees DC
    Science; 2003 Aug; 301(5633):603-4. PubMed ID: 12893929
    [No Abstract]   [Full Text] [Related]  

  • 32. Proximity relationships between helices I and XI or XII in the lactose permease of Escherichia coli determined by site-directed thiol cross-linking.
    Wang Q; Kaback HR
    J Mol Biol; 1999 Aug; 291(3):683-92. PubMed ID: 10448046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detergent-mediated reconstitution of membrane proteins.
    Knol J; Sjollema K; Poolman B
    Biochemistry; 1998 Nov; 37(46):16410-5. PubMed ID: 9819233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling electron paramagnetic resonance spectroscopy.
    Morin B; Bourhis JM; Belle V; Woudstra M; Carrière F; Guigliarelli B; Fournel A; Longhi S
    J Phys Chem B; 2006 Oct; 110(41):20596-608. PubMed ID: 17034249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
    Andronesi OC; Becker S; Seidel K; Heise H; Young HS; Baldus M
    J Am Chem Soc; 2005 Sep; 127(37):12965-74. PubMed ID: 16159291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides.
    Bolin KA; Hanson P; Wright SJ; Millhauser GL
    J Magn Reson; 1998 Apr; 131(2):248-53. PubMed ID: 9571100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family.
    Xie H; Patching SG; Gallagher MP; Litherland GJ; Brough AR; Venter H; Yao SY; Ng AM; Young JD; Herbert RB; Henderson PJ; Baldwin SA
    Mol Membr Biol; 2004; 21(5):323-36. PubMed ID: 15513740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.
    Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP
    J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase.
    Kirby TL; Karim CB; Thomas DD
    Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.