BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

974 related articles for article (PubMed ID: 10423253)

  • 21. Electron-transferring flavoprotein from pig kidney: flavin analogue studies.
    Gorelick RJ; Thorpe C
    Biochemistry; 1986 Nov; 25(22):7092-8. PubMed ID: 3801410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus.
    Byron CM; Stankovich MT; Husain M; Davidson VL
    Biochemistry; 1989 Oct; 28(21):8582-7. PubMed ID: 2605209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photogeneration and reactivity of flavin anionic semiquinone in a bifurcating electron transfer flavoprotein.
    Duan HD; Khan SA; Miller AF
    Biochim Biophys Acta Bioenerg; 2021 Jul; 1862(7):148415. PubMed ID: 33727071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 31P-NMR spectroscopy of human and Paracoccus denitrificans electron transfer flavoproteins, and 13C- and 15N-NMR spectroscopy of human electron transfer flavoprotein in the oxidised and reduced states.
    Griffin KJ; Degala GD; Eisenreich W; Müller F; Bacher A; Frerman FE
    Eur J Biochem; 1998 Jul; 255(1):125-32. PubMed ID: 9692910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extensive conformational sampling in a ternary electron transfer complex.
    Leys D; Basran J; Talfournier F; Sutcliffe MJ; Scrutton NS
    Nat Struct Biol; 2003 Mar; 10(3):219-25. PubMed ID: 12567183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes.
    Wilson EK; Huang L; Sutcliffe MJ; Mathews FS; Hille R; Scrutton NS
    Biochemistry; 1997 Jan; 36(1):41-8. PubMed ID: 8993316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans.
    Husain M; Steenkamp DJ
    J Bacteriol; 1985 Aug; 163(2):709-15. PubMed ID: 2991202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans.
    Chowdhury NP; Mowafy AM; Demmer JK; Upadhyay V; Koelzer S; Jayamani E; Kahnt J; Hornung M; Demmer U; Ermler U; Buckel W
    J Biol Chem; 2014 Feb; 289(8):5145-57. PubMed ID: 24379410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulations of the reduction potentials of flavin-based electron bifurcation complexes and semiquinone stabilities are key to control directional electron flow.
    Sucharitakul J; Buttranon S; Wongnate T; Chowdhury NP; Prongjit M; Buckel W; Chaiyen P
    FEBS J; 2021 Feb; 288(3):1008-1026. PubMed ID: 32329961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties.
    Beckmann JD; Frerman FE
    Biochemistry; 1985 Jul; 24(15):3913-21. PubMed ID: 4052375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein.
    Augustin P; Toplak M; Fuchs K; Gerstmann EC; Prassl R; Winkler A; Macheroux P
    J Biol Chem; 2018 Feb; 293(8):2829-2840. PubMed ID: 29301933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii.
    Sato K; Nishina Y; Shiga K
    J Biochem; 2013 Jun; 153(6):565-72. PubMed ID: 23543477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noncovalent interactions that tune the reactivities of the flavins in bifurcating electron transferring flavoprotein.
    González-Viegas M; Kar RK; Miller AF; Mroginski MA
    J Biol Chem; 2023 Jun; 299(6):104762. PubMed ID: 37119850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose.
    Burns KD; Pieper PA; Liu HW; Stankovich MT
    Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.