BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10423416)

  • 1. Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis.
    Novoderezhkin V; Monshouwer R; van Grondelle R
    Biophys J; 1999 Aug; 77(2):666-81. PubMed ID: 10423416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria.
    Lapouge K; Näveke A; Gall A; Ivancich A; Seguin J; Scheer H; Sturgis JN; Mattioli TA; Robert B
    Biochemistry; 1999 Aug; 38(34):11115-21. PubMed ID: 10460167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations.
    Ketelaars M; van Oijen AM; Matsushita M; Köhler J; Schmidt J; Aartsma TJ
    Biophys J; 2001 Mar; 80(3):1591-603. PubMed ID: 11222320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria.
    Novoderezhkin VI; Razjivin AP
    Biophys J; 1995 Mar; 68(3):1089-100. PubMed ID: 7756528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton delocalization in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy.
    Novoderezhkin V; Fetisova Z
    Biophys J; 1999 Jul; 77(1):424-30. PubMed ID: 10388768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton delocalization in the antenna of purple bacteria: exciton spectrum calculations using Z-ray data and experimental site inhomogeneity.
    Dracheva TV; Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1996 May; 387(1):81-4. PubMed ID: 8654573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation delocalization over the whole core antenna of photosynthetic purple bacteria evidenced by non-linear pump-probe spectroscopy.
    Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1995 Jul; 368(2):370-2. PubMed ID: 7628640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural organization of the antenna chromophore protein complexes in membranes of the photosynthetic bacterium Rhodopseudomonas viridis.
    Klevanik AV
    Membr Cell Biol; 1998; 12(1):9-26. PubMed ID: 9829255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.
    Urboniene V; Vrublevskaja O; Trinkunas G; Gall A; Robert B; Valkunas L
    Biophys J; 2007 Sep; 93(6):2188-98. PubMed ID: 17513366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria.
    van Grondelle R; Novoderezhkin V
    Biochemistry; 2001 Dec; 40(50):15057-68. PubMed ID: 11735388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus.
    Novoderezhkin VI; Taisova AS; Fetisova ZG; Blankenship RE; Savikhin S; Buck DR; Struve WS
    Biophys J; 1998 Apr; 74(4):2069-75. PubMed ID: 9545065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient energy transfer from the carotenoid S(2) state in a photosynthetic light-harvesting complex.
    Macpherson AN; Arellano JB; Fraser NJ; Cogdell RJ; Gillbro T
    Biophys J; 2001 Feb; 80(2):923-30. PubMed ID: 11159459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris.
    Gall A; Robert B
    Biochemistry; 1999 Apr; 38(16):5185-90. PubMed ID: 10213625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila.
    Freer A; Prince S; Sauer K; Papiz M; Hawthornthwaite-Lawless A; McDermott G; Cogdell R; Isaacs NW
    Structure; 1996 Apr; 4(4):449-62. PubMed ID: 8740367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B800-->B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange.
    Herek JL; Fraser NJ; Pullerits T; Martinsson P; Polívka T; Scheer H; Cogdell RJ; Sundström V
    Biophys J; 2000 May; 78(5):2590-6. PubMed ID: 10777755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band.
    van Oijen AM; Ketelaars M; Köhler J; Aartsma TJ; Schmidt J
    Biophys J; 2000 Mar; 78(3):1570-7. PubMed ID: 10692341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides.
    Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y
    Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050.
    McLuskey K; Prince SM; Cogdell RJ; Isaacs NW
    Biochemistry; 2001 Jul; 40(30):8783-9. PubMed ID: 11467938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection map of the reaction center-light harvesting 1 complex from Rhodopseudomonas viridis at 10 A resolution.
    Ikeda-Yamasaki I; Odahara T; Mitsuoka K; Fujiyoshi Y; Murata K
    FEBS Lett; 1998 Apr; 425(3):505-8. PubMed ID: 9563522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.