These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10423428)

  • 1. Ionic strength dependence of localized contact formation between membranes: nonlinear theory and experiment.
    Coakley WT; Gallez D; de Souza ER; Gauci H
    Biophys J; 1999 Aug; 77(2):817-28. PubMed ID: 10423428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized contact formation by erythrocyte membranes: electrostatic effects.
    Thomas NE; Coakley WT
    Biophys J; 1995 Oct; 69(4):1387-401. PubMed ID: 8534809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of polymer concentration and molecular weight and of enzymic glycocalyx modification on erythrocyte interaction in dextran solutions.
    Baker AJ; Coakley WT; Gallez D
    Eur Biophys J; 1993; 22(1):53-62. PubMed ID: 7685691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-membrane interactions: parallel membranes or patterned discrete contacts.
    Darmani H; Coakley WT
    Biochim Biophys Acta; 1990 Jan; 1021(2):182-90. PubMed ID: 1689180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte agglutination by wheat germ agglutinin: ionic strength dependence of the contact seam topology.
    Rolfe M; Parmar A; Hoy TG; Coakley WT
    Mol Membr Biol; 2001; 18(2):169-76. PubMed ID: 11463209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phagocytosis by Acanthamoeba castellanii: ionic strength dependence of the probability of cell attachment; ingestion and contact seam morphology.
    Obaray N; Coakley WT
    Colloids Surf B Biointerfaces; 2001 Oct; 22(2):127-140. PubMed ID: 11451659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biophysical model for interaction of cells with a surface coat (glycocalyx). I. Electrostatic interaction profile.
    Lerche D
    J Theor Biol; 1983 Sep; 104(2):231-48. PubMed ID: 6645556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength.
    Ward MD; Hammer DA
    Biophys J; 1993 Mar; 64(3):936-59. PubMed ID: 8386020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH; Winlove CP
    Biophys J; 1999 Dec; 77(6):3096-107. PubMed ID: 10585931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly nonlinear analysis of the electrohydrodynamic instability of a charged membrane.
    Thaokar RM; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051913. PubMed ID: 12513529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force versus axial deflection of pipette-aspirated closed membranes.
    Heinrich V; Ounkomol C
    Biophys J; 2007 Jul; 93(2):363-72. PubMed ID: 17468170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lateral separation of contacts on erythrocytes agglutinated by polylysine.
    Thomas NE; Coakley WT; Akay G
    Cell Biophys; 1992; 20(2-3):125-47. PubMed ID: 1285296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface shape change during fusion of erythrocyte membranes is sensitive to membrane skeleton agents.
    Wu Y; Rosenberg JD; Sowers AE
    Biophys J; 1994 Nov; 67(5):1896-905. PubMed ID: 7858126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of biomimetic surfaces formed from cell membranes.
    Rao NM; Plant AL; Silin V; Wight S; Hui SW
    Biophys J; 1997 Dec; 73(6):3066-77. PubMed ID: 9414220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational response of the glycocalyx to ionic strength and interaction with modified glass surfaces: study of live red cells by interferometry.
    Wolf H; Gingell D
    J Cell Sci; 1983 Sep; 63():101-12. PubMed ID: 6630305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attraction, deformation and contact of membranes induced by low frequency electric fields.
    Dimitrov DS; Apostolova MA; Sowers AE
    Biochim Biophys Acta; 1990 Apr; 1023(3):389-97. PubMed ID: 2334730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of lipid demixing on the electrostatic interaction of planar membranes across a salt solution.
    Russ C; Heimburg T; von Grünberg HH
    Biophys J; 2003 Jun; 84(6):3730-42. PubMed ID: 12770879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding.
    Evans E; Leung A
    J Cell Biol; 1984 Apr; 98(4):1201-8. PubMed ID: 6546931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition.
    Strey H; Peterson M; Sackmann E
    Biophys J; 1995 Aug; 69(2):478-88. PubMed ID: 8527662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.