These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10423457)

  • 21. Bidirectional movement of actin filaments along tracks of myosin heads.
    Toyoshima YY; Toyoshima C; Spudich JA
    Nature; 1989 Sep; 341(6238):154-6. PubMed ID: 2674720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow filament dynamics and viscoelasticity in entangled and active actin networks.
    Keller M; Tharmann R; Dichtl MA; Bausch AR; Sackmann E
    Philos Trans A Math Phys Eng Sci; 2003 Apr; 361(1805):699-711; discussion 711-2. PubMed ID: 12871619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force Generation by Myosin Motors: A Structural Perspective.
    Robert-Paganin J; Pylypenko O; Kikuti C; Sweeney HL; Houdusse A
    Chem Rev; 2020 Jan; 120(1):5-35. PubMed ID: 31689091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge.
    Albet-Torres N; O'Mahony J; Charlton C; Balaz M; Lisboa P; Aastrup T; Månsson A; Nicholls IA
    Langmuir; 2007 Oct; 23(22):11147-56. PubMed ID: 17696458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stepwise sliding of single actin and Myosin filaments.
    Liu X; Pollack GH
    Biophys J; 2004 Jan; 86(1 Pt 1):353-8. PubMed ID: 14695277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective attachment of F-actin with controlled length for developing an intelligent nanodevice.
    Wei MY; Leon LJ; Lee Y; Parks D; Carroll L; Famouri P
    J Colloid Interface Sci; 2011 Apr; 356(1):182-9. PubMed ID: 21269638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments.
    Hariadi RF; Sommese RF; Adhikari AS; Taylor RE; Sutton S; Spudich JA; Sivaramakrishnan S
    Nat Nanotechnol; 2015 Aug; 10(8):696-700. PubMed ID: 26149240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The unit event of sliding of the chemo-mechanical enzyme composed of myosin and actin with regulatory proteins.
    Oosawa F
    Biochem Biophys Res Commun; 2008 Apr; 369(1):144-8. PubMed ID: 18157940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The excluded volume effect induced by poly(ethylene glycol) modulates the motility of actin filaments interacting with myosin.
    Munakata S; Hatori K
    FEBS J; 2013 Nov; 280(22):5875-83. PubMed ID: 24004408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperative regulation of myosin-actin interactions by a continuous flexible chain II: actin-tropomyosin-troponin and regulation by calcium.
    Smith DA; Geeves MA
    Biophys J; 2003 May; 84(5):3168-80. PubMed ID: 12719246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature control of the motility of actin filaments interacting with myosin molecules using an electrically conductive glass in the presence of direct current.
    Wada R; Sato D; Nakamura T; Hatori K
    Arch Biochem Biophys; 2015 Nov; 586():51-6. PubMed ID: 26456400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The working stroke of myosin crossbridges.
    Huxley H
    Biophys J; 1995 Apr; 68(4 Suppl):55S-56S; discussion 57S-58S. PubMed ID: 7787101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entrapping desired amounts of actin filaments and molecular motor proteins in giant liposomes.
    Takiguchi K; Yamada A; Negishi M; Tanaka-Takiguchi Y; Yoshikawa K
    Langmuir; 2008 Oct; 24(20):11323-6. PubMed ID: 18816022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are actin filaments moving under unloaded conditions in the in vitro motility assay?
    Haeberle JR; Hemric ME
    Biophys J; 1995 Apr; 68(4 Suppl):306S-310S; discussion 310S-311S. PubMed ID: 7787096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Twirling motion of actin filaments in gliding assays with nonprocessive Myosin motors.
    Vilfan A
    Biophys J; 2009 Aug; 97(4):1130-7. PubMed ID: 19686661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle myosin II structure and function.
    Lutz GJ; Lieber RL
    Exerc Sport Sci Rev; 1999; 27():63-77. PubMed ID: 10791014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of urea and guanidine hydrochloride on the sliding movement of actin filaments with ATP hydrolysis by myosin molecules.
    Kumemoto R; Hosogoe Y; Nomura N; Hatori K
    J Biochem; 2011 Jun; 149(6):713-20. PubMed ID: 21324985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The core of the motor domain determines the direction of myosin movement.
    Homma K; Yoshimura M; Saito J; Ikebe R; Ikebe M
    Nature; 2001 Aug; 412(6849):831-4. PubMed ID: 11518969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface hydrophobicity modulates the operation of actomyosin-based dynamic nanodevices.
    Nicolau DV; Solana G; Kekic M; Fulga F; Mahanivong C; Wright J; Ivanova EP; dos Remedios CG
    Langmuir; 2007 Oct; 23(21):10846-54. PubMed ID: 17854206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal activation energy for bidirectional movement of actin along bipolar tracks of myosin filaments.
    Okubo H; Iwai M; Iwai S; Chaen S
    Biochem Biophys Res Commun; 2010 May; 396(2):539-42. PubMed ID: 20435018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.