These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10424168)

  • 1. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes.
    Runnels PL; Joseph JD; Logman MJ; Wightman RM
    Anal Chem; 1999 Jul; 71(14):2782-9. PubMed ID: 10424168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity.
    Heien ML; Phillips PE; Stuber GD; Seipel AT; Wightman RM
    Analyst; 2003 Dec; 128(12):1413-9. PubMed ID: 14737224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.
    Hashemi P; Dankoski EC; Petrovic J; Keithley RB; Wightman RM
    Anal Chem; 2009 Nov; 81(22):9462-71. PubMed ID: 19827792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving in Situ Electrode Calibration with Principal Component Regression for Fast-Scan Cyclic Voltammetry.
    Schuweiler DR; Howard CD; Ramsson ES; Garris PA
    Anal Chem; 2018 Nov; 90(22):13434-13442. PubMed ID: 30335966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background-subtraction of fast-scan cyclic staircase voltammetry at protein-modified carbon-fiber electrodes.
    Hayes MA; Kristensen EW; Kuhr WG
    Biosens Bioelectron; 1998 Dec; 13(12):1297-305. PubMed ID: 9883564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of in vivo measurements with carbon fiber microelectrodes.
    Logman MJ; Budygin EA; Gainetdinov RR; Wightman RM
    J Neurosci Methods; 2000 Feb; 95(2):95-102. PubMed ID: 10752479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the chemical architecture of carbon-fiber microelectrodes. 3. Effect of charge on the electron-transfer properties of ECL reactions.
    Hopper P; Kuhr WG
    Anal Chem; 1994 Jul; 66(13):1996-2004. PubMed ID: 8067522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry.
    Jones SR; Mickelson GE; Collins LB; Kawagoe KT; Wightman RM
    J Neurosci Methods; 1994 Apr; 52(1):1-10. PubMed ID: 8090011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA
    Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of recording media composition on the responses of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry.
    Gerhardt GA; Hoffman AF
    J Neurosci Methods; 2001 Aug; 109(1):13-21. PubMed ID: 11489295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry.
    Rice ME; Nicholson C
    Anal Chem; 1989 Sep; 61(17):1805-10. PubMed ID: 2802146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes.
    Takmakov P; Zachek MK; Keithley RB; Bucher ES; McCarty GS; Wightman RM
    Anal Chem; 2010 Dec; 82(23):9892-900. PubMed ID: 21047096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal differentiation of pH-dependent capacitive current from dopamine.
    Yoshimi K; Weitemier A
    Anal Chem; 2014 Sep; 86(17):8576-84. PubMed ID: 25105214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.
    Makos MA; Omiatek DM; Ewing AG; Heien ML
    Langmuir; 2010 Jun; 26(12):10386-91. PubMed ID: 20380393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry.
    Kume-Kick J; Rice ME
    J Neurosci Methods; 1998 Oct; 84(1-2):55-62. PubMed ID: 9821634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine.
    Ross AE; Venton BJ
    Analyst; 2012 Jul; 137(13):3045-51. PubMed ID: 22606688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid.
    Zhang L; Lin X
    Anal Bioanal Chem; 2005 Aug; 382(7):1669-77. PubMed ID: 15997381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.