BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10424509)

  • 1. Exercise-induced rise in arterial potassium in patients with chronic heart failure.
    Tanabe Y; Ito M; Hosaka Y; Ito E; Suzuki K; Takahashi M
    Chest; 1999 Jul; 116(1):88-96. PubMed ID: 10424509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of exercise ventilation in clinical evaluation and risk stratification in patients with chronic heart failure.
    Jankowska EA; Pietruk-Kowalczyk J; Zymliński R; Witkowski T; Ponikowska B; Sebzda T; Rzeczuch K; Borodulin-Nadzieja L; Hańczycowa H; Banasiak W; Ponikowski P
    Kardiol Pol; 2003 Aug; 59(8):115-27; commentary 126-7. PubMed ID: 14560326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilation during exercise in chronic heart failure.
    Wasserman K; Zhang YY; Riley MS
    Basic Res Cardiol; 1996; 91 Suppl 1():1-11. PubMed ID: 8896738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term modulation of the ventilatory response to exercise is preserved in obstructive sleep apnea.
    Bernhardt V; Mitchell GS; Lee WY; Babb TG
    Respir Physiol Neurobiol; 2017 Feb; 236():42-50. PubMed ID: 27840272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of plasma norepinephrine and renin-angiotensin-aldosterone system to dynamic exercise in patients with congestive heart failure.
    Kato M; Kinugawa T; Omodani H; Osaki S; Ahmmed GU; Ogino K; Hisatome I; Miyakoda H; Thames MD
    J Card Fail; 1996 Jun; 2(2):103-10. PubMed ID: 8798111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of physical training on exercise-induced hyperkalemia in chronic heart failure. Relation with ventilation and catecholamines.
    Barlow CW; Qayyum MS; Davey PP; Conway J; Paterson DJ; Robbins PA
    Circulation; 1994 Mar; 89(3):1144-52. PubMed ID: 8124801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ineffective ventilation during exercise in patients with chronic congestive heart failure.
    Sovijärvi AR; Näveri H; Leinonen H
    Clin Physiol; 1992 Jul; 12(4):399-408. PubMed ID: 1505161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of end-tidal P(CO(2)) response to exercise and its relation to functional capacity in patients with chronic heart failure.
    Tanabe Y; Hosaka Y; Ito M; Ito E; Suzuki K
    Chest; 2001 Mar; 119(3):811-7. PubMed ID: 11243962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide production during exercise in chronic heart failure.
    Adachi H; Nguyen PH; Belardinelli R; Hunter D; Jung T; Wasserman K
    Am Heart J; 1997 Aug; 134(2 Pt 1):196-202. PubMed ID: 9313597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential contribution of dead space ventilation and low arterial pCO2 to exercise hyperpnea in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.
    Wensel R; Georgiadou P; Francis DP; Bayne S; Scott AC; Genth-Zotz S; Anker SD; Coats AJ; Piepoli MF
    Am J Cardiol; 2004 Feb; 93(3):318-23. PubMed ID: 14759381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas exchange response to exercise in patients with chronic heart failure.
    Bellone A; Rusconi F; Frisinghelli A; Aliprandi P; Castelli C; Confalonieri M; Palange P
    Monaldi Arch Chest Dis; 1999 Feb; 54(1):3-6. PubMed ID: 10218364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading.
    Poon CS; Tin C
    Respir Physiol Neurobiol; 2013 Mar; 186(1):114-30. PubMed ID: 23274121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of 'ideal' alveolar air equations and corrected end-tidal PCO
    Van Iterson EH; Olson TP
    Int J Cardiol; 2018 Jan; 250():176-182. PubMed ID: 29054325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired matching of perfusion and ventilation in heart failure detected by 133xenon.
    Lewis NP; Banning AP; Cooper JP; Sundar AS; Facey PE; Evans WD; Henderson AH
    Basic Res Cardiol; 1996; 91 Suppl 1():45-9. PubMed ID: 8896743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Clinical use of ventilation measurement during early phase of exercise in patients with chronic heart failure].
    Jankowska EA; Witkowski T; Zymliński R; Ponikowska B; Petruk-Kowalczyk J; Szachniewicz J; Reczuch K; Borodulin-Nadzieja L; Banasiak W; Ponikowski P
    Pol Arch Med Wewn; 2004 Mar; 111(3):283-90. PubMed ID: 15230208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities.
    Sullivan MJ; Higginbotham MB; Cobb FR
    Circulation; 1988 Mar; 77(3):552-9. PubMed ID: 3342486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg blood flow and increased potassium release during exercise in chronic heart failure: effect of physical training.
    Barlow CW; Davey PP; Qayyum MS; Conway J; Paterson DJ; Robbins PA
    J Card Fail; 1998 Jun; 4(2):105-14. PubMed ID: 9730103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve.
    Matsumoto A; Itoh H; Eto Y; Kobayashi T; Kato M; Omata M; Watanabe H; Kato K; Momomura S
    J Am Coll Cardiol; 2000 Jul; 36(1):242-9. PubMed ID: 10898441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventilatory mechanisms of exercise intolerance in chronic heart failure.
    Myers J; Salleh A; Buchanan N; Smith D; Neutel J; Bowes E; Froelicher VF
    Am Heart J; 1992 Sep; 124(3):710-9. PubMed ID: 1514499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.
    Olson TP; Joyner MJ; Eisenach JH; Curry TB; Johnson BD
    Exp Physiol; 2014 Feb; 99(2):414-26. PubMed ID: 24163425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.