BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10424909)

  • 21. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin.
    Sánchez-Ruiz JM; López-Lacomba JL; Cortijo M; Mateo PL
    Biochemistry; 1988 Mar; 27(5):1648-52. PubMed ID: 3365417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A differential scanning calorimetric study of Newcastle disease virus: identification of proteins involved in thermal transitions.
    Shnyrov VL; Zhadan GG; Cobaleda C; Sagrera A; Muñoz-Barroso I; Villar E
    Arch Biochem Biophys; 1997 May; 341(1):89-97. PubMed ID: 9143357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life.
    Roberts CJ; Darrington RT; Whitley MB
    J Pharm Sci; 2003 May; 92(5):1095-111. PubMed ID: 12712430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Influence of kinetic factors on heat denaturation and renaturation of biopolymers].
    Potekhin SA; Kovrigin EL
    Biofizika; 1998; 43(2):223-32. PubMed ID: 9591098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Gauss-Eyring model: A new thermodynamic model for biochemical and microbial inactivation kinetics.
    Mastwijk HC; Timmermans RAH; Van Boekel MAJS
    Food Chem; 2017 Dec; 237():331-341. PubMed ID: 28764004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins.
    Ratkowsky DA; Olley J; Ross T
    J Theor Biol; 2005 Apr; 233(3):351-62. PubMed ID: 15652145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli.
    Griessler R; D'auria S; Schinzel R; Tanfani F; Nidetzky B
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):255-63. PubMed ID: 10677342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 4-Chlorobutanol induces unusual reversible and irreversible thermal unfolding of ribonuclease A: thermodynamic, kinetic, and conformational characterization.
    Mehta R; Kundu A; Kishore N
    Int J Biol Macromol; 2004 Apr; 34(1-2):13-20. PubMed ID: 15178004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding.
    Andrews JM; Roberts CJ
    J Phys Chem B; 2007 Jul; 111(27):7897-913. PubMed ID: 17571872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.
    Sasahara K; Naiki H; Goto Y
    J Mol Biol; 2005 Sep; 352(3):700-11. PubMed ID: 16098535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-step reversible-irreversible model can account for a negative activation energy in an Arrhenius plot.
    Muench JL; Kruuv J; Lepock JR
    Cryobiology; 1996 Apr; 33(2):253-9. PubMed ID: 8674357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation.
    Nielsen AD; Fuglsang CC; Westh P
    Biochem J; 2003 Jul; 373(Pt 2):337-43. PubMed ID: 12689333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin.
    Wong HJ; Stathopulos PB; Bonner JM; Sawyer M; Meiering EM
    J Mol Biol; 2004 Dec; 344(4):1089-107. PubMed ID: 15544814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding energetics of ligand binding proteins. I. Theoretical model.
    Rösgen J; Hinz HJ
    J Mol Biol; 2001 Mar; 306(4):809-24. PubMed ID: 11243790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fitting bevacizumab aggregation kinetic data with the Finke-Watzky two-step model: Effect of thermal and mechanical stress.
    Oliva A; Llabrés M; Fariña JB
    Eur J Pharm Sci; 2015 Sep; 77():170-9. PubMed ID: 26091571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Between-species variation in the kinetic stability of TIM proteins linked to solvation-barrier free energies.
    Costas M; Rodríguez-Larrea D; De Maria L; Borchert TV; Gómez-Puyou A; Sanchez-Ruiz JM
    J Mol Biol; 2009 Jan; 385(3):924-37. PubMed ID: 18992756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal denaturation of β-glucosidase B from Paenibacillus polymyxa proceeds through a Lumry-Eyring mechanism.
    Camarillo-Cadena M; Garza-Ramos G; Peimbert M; Pérez-Hernández G; Zubillaga RA
    Protein J; 2011 Jun; 30(5):318-23. PubMed ID: 21626159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.