BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10425122)

  • 1. Microbial transformation of sampangine.
    Orabi KY; Li E; Clark AM; Hufford CD
    J Nat Prod; 1999 Jul; 62(7):988-92. PubMed ID: 10425122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial transformation of benzosampangine.
    Orabi KY; Clark AM; Hufford CD
    J Nat Prod; 2000 Mar; 63(3):396-8. PubMed ID: 10757729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the major metabolite of sampangine in rats.
    Orabi KY; Walker LA; Clark AM; Hufford CD
    J Nat Prod; 2000 May; 63(5):685-7. PubMed ID: 10843589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffold hopping of sampangine: discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans.
    Jiang Z; Liu N; Dong G; Jiang Y; Liu Y; He X; Huang Y; He S; Chen W; Li Z; Yao J; Miao Z; Zhang W; Sheng C
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4090-4. PubMed ID: 25115626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of New Tricyclic Oxime Sampangine Derivatives as Potent Antifungal Agents for the Treatment of Cryptococcosis and Candidiasis.
    Yang W; Liu R; Li Z; Tu J; Xu D; Liu N; Sheng C
    J Med Chem; 2024 Mar; 67(6):4726-4738. PubMed ID: 38489247
    [No Abstract]   [Full Text] [Related]  

  • 6. Discovery of simplified sampangine derivatives as novel fungal biofilm inhibitors.
    Liu N; Zhong H; Tu J; Jiang Z; Jiang Y; Jiang Y; Jiang Y; Li J; Zhang W; Wang Y; Sheng C
    Eur J Med Chem; 2018 Jan; 143():1510-1523. PubMed ID: 29126739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine.
    Agarwal AK; Xu T; Jacob MR; Feng Q; Lorenz MC; Walker LA; Clark AM
    Eukaryot Cell; 2008 Feb; 7(2):387-400. PubMed ID: 18156292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel metabolite structures from biotransformation of a sesquiterpenoid ketone by selected fungal strains.
    Hebda C; Szykula J; Orpiszewski J; Fischer P
    Biol Chem Hoppe Seyler; 1991 May; 372(5):337-44. PubMed ID: 1872996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of human diazepam and clonazepam metabolites.
    de Paula NC; Araujo Cordeiro KC; de Melo Souza PL; Nogueira DF; da Silva e Sousa DB; Costa MB; Noël F; de Oliveira V
    Bioorg Med Chem Lett; 2015 Mar; 25(5):1026-9. PubMed ID: 25655722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4'-hydroxyflavanone.
    Mikell JR; Herath W; Khan IA
    Chem Pharm Bull (Tokyo); 2011; 59(6):692-7. PubMed ID: 21628902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological conversion of a beta- and gamma-eudesmol mixture by Rhizopus.
    Maatooq GT; Hoffmann JJ
    Pharmazie; 2002 Jan; 57(1):59-61. PubMed ID: 11836934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Simplified Sampangine Derivatives with Potent Antifungal Activities against Cryptococcal Meningitis.
    Li Z; Liu N; Tu J; Ji C; Han G; Sheng C
    ACS Infect Dis; 2019 Aug; 5(8):1376-1384. PubMed ID: 31070884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two new antifungal alkaloids produced by Streptoverticillium morookaense.
    Feng N; Ye W; Wu P; Huang Y; Xie H; Wei X
    J Antibiot (Tokyo); 2007 Mar; 60(3):179-83. PubMed ID: 17446689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine.
    Jiang Z; Liu N; Hu D; Dong G; Miao Z; Yao J; He H; Jiang Y; Zhang W; Wang Y; Sheng C
    Chem Commun (Camb); 2015 Oct; 51(78):14648-51. PubMed ID: 26289663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial transformations of natural antitumor agents. IV. Formation of N-(2)-nor-d-tetrandrine by Cunninghamella blakesleeana (ATCC 8688a).
    Davis PJ; Wiese DR; Rosazza JP
    Lloydia; 1977; 40(3):239-46. PubMed ID: 895382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal activities and cytotoxicity studies of six new azasordarins.
    Herreros E; Almela MJ; Lozano S; Gomez de las Heras F; Gargallo-Viola D
    Antimicrob Agents Chemother; 2001 Nov; 45(11):3132-9. PubMed ID: 11600368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial epoxidation of the tricyclic sesquiterpene presilphiperfolane angelate ester.
    Orabi KY
    Z Naturforsch C J Biosci; 2001; 56(3-4):223-7. PubMed ID: 11371012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metabolites.
    Mikell JR; Khan IA
    Chem Pharm Bull (Tokyo); 2012; 60(9):1139-45. PubMed ID: 22976322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cunninghamella bertholletiae exhibits increased resistance to human neutrophils with or without antifungal agents as compared to Rhizopus spp.
    Simitsopoulou M; Georgiadou E; Walsh TJ; Roilides E
    Med Mycol; 2010 Aug; 48(5):720-4. PubMed ID: 20100138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial transformation of prednisone.
    Choudhary MI; Siddiqui ZA; Musharraf SG; Nawaz SA; Atta-Ur-Rahman
    Nat Prod Res; 2005 Jun; 19(4):311-7. PubMed ID: 15938135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.