These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10425338)

  • 41. Inlay osmotic pump tablets containing metformin and glipizide.
    Patel RB; Patel GN; Patel HR; Patel MM
    Drug Dev Ind Pharm; 2011 Oct; 37(10):1244-52. PubMed ID: 21466414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of an osmotic pump system for controlled delivery of diclofenac sodium.
    Emara LH; Taha NF; Badr RM; Mursi NM
    Drug Discov Ther; 2012 Oct; 6(5):269-77. PubMed ID: 23229148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual coating of swellable and rupturable polymers on glipizide loaded MCC pellets for pulsatile delivery: formulation design and in vitro evaluation.
    Yadav D; Survase S; Kumar N
    Int J Pharm; 2011 Oct; 419(1-2):121-30. PubMed ID: 21807081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and evaluation of osmotic pump-based controlled release system of Ambroxol Hydrochloride.
    Cheng X; Sun M; Gao Y; Cao F; Zhai G
    Pharm Dev Technol; 2011 Aug; 16(4):392-9. PubMed ID: 20429827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.
    Dereymaker A; Scurr DJ; Steer ED; Roberts CJ; Van den Mooter G
    Mol Pharm; 2017 Apr; 14(4):959-973. PubMed ID: 28206770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and evaluation of compound metformin/glipizide elementary osmotic pump tablets.
    Ouyang D; Nie S; Li W; Guo H; Liu H; Pan W
    J Pharm Pharmacol; 2005 Jul; 57(7):817-20. PubMed ID: 15969939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled Release of the Nimodipine-Loaded Self-Microemulsion Osmotic Pump Capsules: Development and Characterization.
    Huang Y; Zhang S; Shen H; Li J; Gao C
    AAPS PharmSciTech; 2018 Apr; 19(3):1308-1319. PubMed ID: 29340982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlled porosity osmotic pump for the delivery of flurbiprofen.
    Chauhan CS; Choudhury PK
    Curr Drug Deliv; 2006 Apr; 3(2):193-8. PubMed ID: 16611005
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase transited and vapor-induced dual capsular system (DCS) for achieving delayed and osmotic release of cefadroxil.
    Philip AK; Philip B
    Pharm Dev Technol; 2011 Oct; 16(5):457-65. PubMed ID: 20482448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs.
    Philip AK; Philip B
    PDA J Pharm Sci Technol; 2011; 65(1):32-41. PubMed ID: 21414938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solid lipid excipients - matrix agents for sustained drug delivery.
    Rosiaux Y; Jannin V; Hughes S; Marchaud D
    J Control Release; 2014 Aug; 188():18-30. PubMed ID: 24929038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards a rational basis for selection of excipients: Excipient Efficiency for controlled release.
    Casas M; Aguilar-de-Leyva Á; Caraballo I
    Int J Pharm; 2015 Oct; 494(1):288-95. PubMed ID: 26253376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interest of multifunctional lipid excipients: case of Gelucire 44/14.
    Chambin O; Jannin V
    Drug Dev Ind Pharm; 2005 Jul; 31(6):527-34. PubMed ID: 16109625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and Evaluation of a Once-Daily Controlled Porosity Osmotic Pump of Tapentadol Hydrochloride.
    Thakkar HP; Pancholi N; Patel CV
    AAPS PharmSciTech; 2016 Oct; 17(5):1248-60. PubMed ID: 26677859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs.
    Prabakaran D; Singh P; Jaganathan KS; Vyas SP
    J Control Release; 2004 Mar; 95(2):239-48. PubMed ID: 14980772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development and in-vitro evaluation of a colon-specific controlled release drug delivery system.
    Talukder RM; Fassihi R
    J Pharm Pharmacol; 2008 Oct; 60(10):1297-303. PubMed ID: 18812022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hot melt granulation: a facile approach for monolithic osmotic release tablets.
    Panda RR; Tiwary AK
    Drug Dev Ind Pharm; 2012 Apr; 38(4):447-61. PubMed ID: 21954892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wet process-induced phase-transited drug delivery system: a means for achieving osmotic, controlled, and level A IVIVC for poorly water-soluble drug.
    Philip AK; Pathak K
    Drug Dev Ind Pharm; 2008 Jul; 34(7):735-43. PubMed ID: 18608466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and formulation of nano-porous controlled porosity osmotic pumps (CPOPs) containing a poorly water soluble drug, glibenclamide.
    B LA; Javadzadeh Y; Jalali MB; Nokhodchi A; Shokri J
    Pak J Pharm Sci; 2019 Sep; 32(5):1979-1986. PubMed ID: 31813861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osmotic capsules: A universal oral, controlled-release drug delivery dosage form.
    Waterman KC; Goeken GS; Konagurthu S; Likar MD; MacDonald BC; Mahajan N; Swaminathan V
    J Control Release; 2011 Jun; 152(2):264-9. PubMed ID: 21315121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.