These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10425344)

  • 1. Influence of phase transformation on indomethacin release from microemulsions.
    Trotta M
    J Control Release; 1999 Aug; 60(2-3):399-405. PubMed ID: 10425344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of internal structure of selected water-Tween 40-Imwitor 308-IPM microemulsions on ketoprofene release.
    Podlogar F; Bester Rogac M; Gasperlin M
    Int J Pharm; 2005 Sep; 302(1-2):68-77. PubMed ID: 16099611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the phase behaviour of systems containing lecithin and 2-acyl lysolecithin derivatives.
    Trotta M; Gallarate M; Pattarino F; Carlotti ME
    Int J Pharm; 1999 Nov; 190(1):83-9. PubMed ID: 10528100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation of microemulsions and release behavior of sodium salicylate from gelled microemulsions.
    Feng G; Xiong Y; Wang H; Yang Y
    Eur J Pharm Biopharm; 2009 Feb; 71(2):297-302. PubMed ID: 18793724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen.
    Ngawhirunpat T; Worachun N; Opanasopit P; Rojanarata T; Panomsuk S
    Pharm Dev Technol; 2013; 18(4):798-803. PubMed ID: 22023398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies.
    Froelich A; Osmałek T; Snela A; Kunstman P; Jadach B; Olejniczak M; Roszak G; Białas W
    J Colloid Interface Sci; 2017 Dec; 507():323-336. PubMed ID: 28806653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process.
    Park KM; Lee MK; Hwang KJ; Kim CK
    Int J Pharm; 1999 Jun; 183(2):145-54. PubMed ID: 10361165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition of a microemulsion upon addition of cyclodextrin - applications in drug delivery.
    Thakur SS; Solloway J; Stikkelman A; Seyfoddin A; Rupenthal ID
    Pharm Dev Technol; 2018 Feb; 23(2):167-175. PubMed ID: 28828910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-ternary phase diagrams of lecithin-based microemulsions: influence of monoalkylphosphates.
    Trotta M; Ugazio E; Gasco MR
    J Pharm Pharmacol; 1995 Jun; 47(6):451-4. PubMed ID: 7674125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid.
    Hoppel M; Ettl H; Holper E; Valenta C
    Int J Pharm; 2014 Nov; 475(1-2):156-62. PubMed ID: 25178824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery.
    Ustündağ Okur N; Yavaşoğlu A; Karasulu HY
    Chem Pharm Bull (Tokyo); 2014; 62(2):135-43. PubMed ID: 24492583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microemulsions and nanoemulsions modified with cationic surfactants for improving the solubility and therapeutic efficacy of loaded drug indomethacin.
    Mirgorodskaya AB; Koroleva MY; Kushnazarova RA; Mishchenko EV; Petrov KA; Lenina OA; Vyshtakalyuk AB; Voloshina AD; Zakharova LY
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34959230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies.
    Kantarci G; Ozgüney I; Karasulu HY; Arzik S; Güneri T
    AAPS PharmSciTech; 2007 Nov; 8(4):E91. PubMed ID: 18181551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin.
    Chen L; Tan F; Wang J; Liu F
    Pharmazie; 2012 Apr; 67(4):319-23. PubMed ID: 22570938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: in vitro.
    Changez M; Varshney M; Chander J; Dinda AK
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):18-25. PubMed ID: 16690263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of griseofulvin nanoparticles from water-dilutable microemulsions.
    Trotta M; Gallarate M; Carlotti ME; Morel S
    Int J Pharm; 2003 Mar; 254(2):235-42. PubMed ID: 12623199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of isopropyl myristate microemulsion systems containing cyclodextrins to improve the solubility of 2 model hydrophobic drugs.
    Nandi I; Bari M; Joshi H
    AAPS PharmSciTech; 2003; 4(1):E10. PubMed ID: 12916919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-sensitive release of indomethacin using lactan-acetate microspheres.
    Na K; Lee KY
    Drug Dev Ind Pharm; 1998 Jun; 24(6):563-8. PubMed ID: 9876624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods.
    Podlogar F; Gasperlin M; Tomsic M; Jamnik A; Rogac MB
    Int J Pharm; 2004 May; 276(1-2):115-28. PubMed ID: 15113620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.