BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10425352)

  • 21. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model.
    Pade V; Stavchansky S
    Pharm Res; 1997 Sep; 14(9):1210-5. PubMed ID: 9327450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusion rates and transport pathways of fluorescein isothiocyanate (FITC)-labeled model compounds through buccal epithelium.
    Hoogstraate AJ; Cullander C; Nagelkerke JF; Senel S; Verhoef JC; Junginger HE; Boddé HE
    Pharm Res; 1994 Jan; 11(1):83-9. PubMed ID: 7511241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Permeation of buspirone hydrochloride across animal buccal mucosa and its mechanism].
    Du Q; Ping QN; Liu G
    Yao Xue Xue Bao; 2001 Aug; 36(8):621-4. PubMed ID: 12579943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative ex vivo drug permeation study of beta-blockers through porcine buccal mucosa.
    Amores S; Lauroba J; Calpena A; Colom H; Gimeno A; Domenech J
    Int J Pharm; 2014 Jul; 468(1-2):50-4. PubMed ID: 24727142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of fentanyl through pig buccal and esophageal epithelia in vitro: influence of concentration and vehicle pH.
    Diaz Del Consuelo I; Falson F; Guy RH; Jacques Y
    Pharm Res; 2005 Sep; 22(9):1525-9. PubMed ID: 16132365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transbuccal permeation of a nucleoside analog, dideoxycytidine: effects of menthol as a permeation enhancer.
    Shojaei AH; Khan M; Lim G; Khosravan R
    Int J Pharm; 1999 Dec; 192(2):139-46. PubMed ID: 10567745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH values, different osmolality values, and bile salts.
    Nielsen HM; Rassing MR
    Int J Pharm; 1999 Aug; 185(2):215-25. PubMed ID: 10460917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porcine buccal mucosa as an in vitro model: relative contribution of epithelium and connective tissue as permeability barriers.
    Kulkarni U; Mahalingam R; Pather SI; Li X; Jasti B
    J Pharm Sci; 2009 Feb; 98(2):471-83. PubMed ID: 18506782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Hamster's cheek pouches as a model for investigation of the oral mucosa permeability].
    Starokadoms'kyĭ PL
    Fiziol Zh (1994); 2006; 52(1):101-5. PubMed ID: 16553305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants.
    Goswami T; Jasti BR; Li X
    Arch Oral Biol; 2009 Jun; 54(6):577-82. PubMed ID: 19344889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol.
    Schürmann W; Turner P
    J Pharm Pharmacol; 1978 Mar; 30(3):137-47. PubMed ID: 24685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cryoprotectants for maintaining drug permeability barriers in porcine buccal mucosa.
    Marxen E; Axelsen MC; Pedersen AML; Jacobsen J
    Int J Pharm; 2016 Sep; 511(1):599-605. PubMed ID: 27426107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations.
    Ceschel GC; Maffei P; Moretti MD; Demontis S; Peana AT
    Int J Pharm; 2000 Feb; 195(1-2):171-7. PubMed ID: 10675694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug-like molecule population.
    Sugano K
    Int J Pharm; 2009 May; 373(1-2):55-61. PubMed ID: 19429288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HO-1-u-1 model for screening sublingual drug delivery--influence of pH, osmolarity and permeation enhancer.
    Wang Y; Zuo Z; Chow MS
    Int J Pharm; 2009 Mar; 370(1-2):68-74. PubMed ID: 19071203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of thermodynamic activities of the unionized and ionized species on drug flux across buccal mucosa.
    Kokate A; Li X; Singh P; Jasti BR
    J Pharm Sci; 2008 Oct; 97(10):4294-306. PubMed ID: 18228580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of release rate and barrier transport of Diclofenac incorporated in hydrophilic matrices: role of cyclodextrins and implications in oral drug delivery.
    Miro A; Rondinone A; Nappi A; Ungaro F; Quaglia F; La Rotonda MI
    Eur J Pharm Biopharm; 2009 May; 72(1):76-82. PubMed ID: 19135532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico model of drug permeability across sublingual mucosa.
    Goswami T; Kokate A; Jasti BR; Li X
    Arch Oral Biol; 2013 May; 58(5):545-51. PubMed ID: 23123066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mucin dispersions as a model for the oromucosal mucus layer in in vitro and ex vivo buccal permeability studies of small molecules.
    Marxen E; Mosgaard MD; Pedersen AML; Jacobsen J
    Eur J Pharm Biopharm; 2017 Dec; 121():121-128. PubMed ID: 28974436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permeability of ionized salicylate derivatives through guinea pig dorsal skin.
    Kamal MA; Nabekura T; Kitagawa S
    Chem Pharm Bull (Tokyo); 2005 Apr; 53(4):441-3. PubMed ID: 15802849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.