These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10427039)

  • 1. Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils.
    Murray RE; Knowles R
    Appl Environ Microbiol; 1999 Aug; 65(8):3487-92. PubMed ID: 10427039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chloramphenicol and cycloheximide on the synthesis of nitrate reductase and nitrite reductase in rice leaves.
    Sawhney SK; Naik MS
    Biochem Biophys Res Commun; 1973 Mar; 51(1):67-73. PubMed ID: 4699565
    [No Abstract]   [Full Text] [Related]  

  • 3. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.
    Körner H; Zumft WG
    Appl Environ Microbiol; 1989 Jul; 55(7):1670-6. PubMed ID: 2764573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denitrification of nitrate by the fungus Cylindrocarpon tonkinense.
    Watsuji TO; Takaya N; Nakamura A; Shoun H
    Biosci Biotechnol Biochem; 2003 May; 67(5):1115-20. PubMed ID: 12834290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of light in the synthesis of nitrate reductase and nitrite reductase in rice seedlings.
    Sawhney SK; Naik MS
    Biochem J; 1972 Nov; 130(2):475-85. PubMed ID: 4664575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Nitric oxide production in rice soils (author's transl)].
    Garcia JL
    Ann Microbiol (Paris); 1976 Apr; 127(3):401-14. PubMed ID: 7989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities.
    Cuhel J; Simek M
    Folia Microbiol (Praha); 2011 May; 56(3):230-5. PubMed ID: 21710230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Response of N transformation related soil enzyme activities to inhibitor applications].
    Chen L; Wu Z; Jiang Y; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1099-103. PubMed ID: 12561170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate and nitrite reductase negative mutants of N2-fixing Azospirillum spp.
    Magalhães LM; Neyra CA; Döbereiner J
    Arch Microbiol; 1978 Jun; 117(3):247-52. PubMed ID: 697499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrite induced nitrate and nitrite reductases in Azotobacter vinelandii.
    Marwaha RS; Sawhney SK; Naik MS
    Indian J Biochem Biophys; 1972 Sep; 9(3):236-9. PubMed ID: 4679823
    [No Abstract]   [Full Text] [Related]  

  • 11. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes.
    Baumann B; Snozzi M; Zehnder AJ; Van Der Meer JR
    J Bacteriol; 1996 Aug; 178(15):4367-74. PubMed ID: 8755862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of combined nitrogen on the expression of nitrate reductase and nitrite reductase in Azorhizobium caulinodans.
    Raju KS; Sharma ND; Lodha ML
    Indian J Exp Biol; 1997 Aug; 35(8):866-70. PubMed ID: 9475063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the nitrate reductase level in anacystis nidulans: activity decay under nitrogen stress.
    Herrero A; Flores E; Guerrero MG
    Arch Biochem Biophys; 1984 Nov; 234(2):454-9. PubMed ID: 6437330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.
    Sabaty M; Schwintner C; Cahors S; Richaud P; Verméglio A
    J Bacteriol; 1999 Oct; 181(19):6028-32. PubMed ID: 10498715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria.
    Ka JO; Urbance J; Ye RW; Ahn TY; Tiedje JM
    FEMS Microbiol Lett; 1997 Nov; 156(1):55-60. PubMed ID: 9368361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype.
    Roco CA; Bergaust LL; Bakken LR; Yavitt JB; Shapleigh JP
    Environ Microbiol; 2017 Jun; 19(6):2507-2519. PubMed ID: 26914200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal changes in nitrogen assimilation of tobacco roots.
    Stöhr C; Mäck G
    J Exp Bot; 2001 Jun; 52(359):1283-9. PubMed ID: 11432947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative study of biological denitrification in soils with the aid of acetylene. II.--Evolution of inhibitory effect of acetylene on N2O-reductase; influence of acetylene on denitrification rate and on nitrate immobilisation (author's transl)].
    Germon JC
    Ann Microbiol (Paris); 1980; 131B(1):81-90. PubMed ID: 6779691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of nitrate and nitrite reductase synthesis in enterobacteria.
    Stewart V
    Antonie Van Leeuwenhoek; 1994; 66(1-3):37-45. PubMed ID: 7747939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.