These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10427041)

  • 1. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy.
    Vroom JM; De Grauw KJ; Gerritsen HC; Bradshaw DJ; Marsh PD; Watson GK; Birmingham JJ; Allison C
    Appl Environ Microbiol; 1999 Aug; 65(8):3502-11. PubMed ID: 10427041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of optically thick specimen using two-photon excitation microscopy.
    Gerritsen HC; De Grauw CJ
    Microsc Res Tech; 1999 Nov; 47(3):206-9. PubMed ID: 10544335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor.
    Deng DM; ten Cate JM
    Caries Res; 2004; 38(1):54-61. PubMed ID: 14684978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric Imaging of Extracellular pH in Dental Biofilms.
    Schlafer S; Dige I
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy.
    Hu Z; Hidalgo G; Houston PL; Hay AG; Shuler ML; Abruña HD; Ghiorse WC; Lion LW
    Appl Environ Microbiol; 2005 Jul; 71(7):4014-21. PubMed ID: 16000816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-versus one photon excitation laser scanning microscopy: critical importance of excitation wavelength.
    Bush PG; Wokosin DL; Hall AC
    Front Biosci; 2007 Jan; 12():2646-57. PubMed ID: 17127269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.
    Schlafer S; Garcia JE; Greve M; Raarup MK; Nyvad B; Dige I
    Appl Environ Microbiol; 2015 Feb; 81(4):1267-73. PubMed ID: 25501477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures.
    Diaspro A; Robello M
    J Photochem Photobiol B; 2000 Mar; 55(1):1-8. PubMed ID: 10877060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques.
    Serra D; Bosch A; Russo DM; Rodríguez ME; Zorreguieta A; Schmitt J; Naumann D; Yantorno O
    Anal Bioanal Chem; 2007 Mar; 387(5):1759-67. PubMed ID: 17216159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2% chlorhexidine.
    Deng DM; Buijs MJ; ten Cate JM
    Eur J Oral Sci; 2004 Feb; 112(1):42-7. PubMed ID: 14871192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm.
    Ma H; Bryers JD
    J Ind Microbiol Biotechnol; 2010 Oct; 37(10):1081-9. PubMed ID: 20552252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors.
    Hidalgo G; Burns A; Herz E; Hay AG; Houston PL; Wiesner U; Lion LW
    Appl Environ Microbiol; 2009 Dec; 75(23):7426-35. PubMed ID: 19801466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions using Nanoplast resin.
    Decho AW; Kawaguchi T
    Biotechniques; 1999 Dec; 27(6):1246-52. PubMed ID: 10631505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the spatial distribution of viable and nonviable bacteria in hydrated microcosm dental plaques by viability profiling.
    Hope CK; Clements D; Wilson M
    J Appl Microbiol; 2002; 93(3):448-55. PubMed ID: 12174043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro.
    Junka AF; Szymczyk P; Smutnicka D; Kos M; Smolina I; Bartoszewicz M; Chlebus E; Turniak M; Sedghizadeh PP
    J Oral Maxillofac Surg; 2015 Mar; 73(3):451-64. PubMed ID: 25544303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining two-photon excitation with fluorescence lifetime imaging.
    Gerritsen HC; Vroom JM; de Grauw CJ
    IEEE Eng Med Biol Mag; 1999; 18(5):31-6. PubMed ID: 10497740
    [No Abstract]   [Full Text] [Related]  

  • 19. Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structure: optical coherence tomography, confocal microscopy and viscoelasticity determination as integrated assessment tools.
    Busanello FH; Petridis X; So MVR; Dijkstra RJB; Sharma PK; van der Sluis LWM
    Int Endod J; 2019 Apr; 52(4):461-474. PubMed ID: 30303560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions.
    Schlafer S; Baelum V; Dige I
    J Microbiol Methods; 2018 Sep; 152():194-200. PubMed ID: 30144480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.