BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10427064)

  • 1. Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp.
    Calvo AM; Hinze LL; Gardner HW; Keller NP
    Appl Environ Microbiol; 1999 Aug; 65(8):3668-73. PubMed ID: 10427064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans.
    Calvo AM; Gardner HW; Keller NP
    J Biol Chem; 2001 Jul; 276(28):25766-74. PubMed ID: 11352908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Aspergillus parasiticus delta12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction.
    Wilson RA; Calvo AM; Chang PK; Keller NP
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2881-2888. PubMed ID: 15347747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species.
    Son YE; Cho HJ; Lee MK; Park HS
    PLoS One; 2020; 15(2):e0228643. PubMed ID: 32017793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans.
    Tsitsigiannis DI; Zarnowski R; Keller NP
    J Biol Chem; 2004 Mar; 279(12):11344-53. PubMed ID: 14699095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species.
    Son YE; Cho HJ; Chen W; Son SH; Lee MK; Yu JH; Park HS
    Curr Genet; 2020 Jun; 66(3):621-633. PubMed ID: 32060628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans.
    Tsitsigiannis DI; Kowieski TM; Zarnowski R; Keller NP
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1809-1821. PubMed ID: 15941990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi.
    Wu MY; Mead ME; Lee MK; Ostrem Loss EM; Kim SC; Rokas A; Yu JH
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of osmotic concentration and pH on sclerotia and cleistothecia production in alkaline and fertile soil Aspergilli.
    Thakur ML
    Microbios; 1973; 7(28):215-20. PubMed ID: 4201565
    [No Abstract]   [Full Text] [Related]  

  • 10. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios.
    Beck JJ; Mahoney NE; Cook D; Gee WS
    J Agric Food Chem; 2012 Dec; 60(48):11869-76. PubMed ID: 23153034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
    Chang PK; Scharfenstein LL; Li P; Ehrlich KC
    Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ozone on spore germination, spore production and biomass production in two Aspergillus species.
    Antony-Babu S; Singleton I
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):413-22. PubMed ID: 19533409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection.
    Hanano A; Almousally I; Shaban M; Blee E
    Appl Environ Microbiol; 2015 Sep; 81(18):6129-44. PubMed ID: 26116672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans.
    Son SH; Son YE; Cho HJ; Chen W; Lee MK; Kim LH; Han DM; Park HS
    Sci Rep; 2020 Apr; 10(1):6094. PubMed ID: 32269291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of airborne Aspergillus flavus in Khartoum (Sudan) airspora with reference to dusty weather and inoculum survival in simulated summer conditions.
    Abdalla MH
    Mycopathologia; 1988 Dec; 104(3):137-41. PubMed ID: 3148861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia.
    Somai BM; Belewa V
    J Food Prot; 2011 Jun; 74(6):1007-11. PubMed ID: 21669082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus.
    Horowitz Brown S; Zarnowski R; Sharpee WC; Keller NP
    Appl Environ Microbiol; 2008 Sep; 74(18):5674-85. PubMed ID: 18658287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxylipins as developmental and host-fungal communication signals.
    Tsitsigiannis DI; Keller NP
    Trends Microbiol; 2007 Mar; 15(3):109-18. PubMed ID: 17276068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspergillus nidulans asexual development: making the most of cellular modules.
    Etxebeste O; Garzia A; Espeso EA; Ugalde U
    Trends Microbiol; 2010 Dec; 18(12):569-76. PubMed ID: 21035346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites.
    Chang PK; Scharfenstein LL; Li RW; Arroyo-Manzanares N; De Saeger S; Diana Di Mavungu J
    Fungal Genet Biol; 2017 Jul; 104():29-37. PubMed ID: 28442441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.