BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10427862)

  • 1. [The influence of steric crowding on the electrochemical reduction of amide groups in a pyridylcarboxamide seriesapplication to rote ction of amines in peptide synthesis].
    Auzeil N
    Ann Pharm Fr; 1999 May; 57(3):255-65. PubMed ID: 10427862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.
    Babu NJ; Reddy LS; Nangia A
    Mol Pharm; 2007; 4(3):417-34. PubMed ID: 17497888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization.
    Zhang K; Teklebrhan RB; Schreckenbach G; Wetmore S; Schweizer F
    J Org Chem; 2009 May; 74(10):3735-43. PubMed ID: 19354261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of cis-proline analogs on peptide conformation.
    Che Y; Marshall GR
    Biopolymers; 2006 Apr; 81(5):392-406. PubMed ID: 16358327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved synthesis of pyridine-thiazole cores of thiopeptide antibiotics.
    Aulakh VS; Ciufolini MA
    J Org Chem; 2009 Aug; 74(15):5750-3. PubMed ID: 19572592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of the amide bond in methionine-containing peptides catalyzed by various palladium(II) complexes: dependence of the hydrolysis rate on the steric bulk of the catalyst.
    Rajković S; Glisić BD; Zivković MD; Djuran MI
    Bioorg Chem; 2009 Oct; 37(5):173-9. PubMed ID: 19656547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concise total synthesis of the thiazolyl peptide antibiotic GE2270 A.
    Delgado O; Müller HM; Bach T
    Chemistry; 2008; 14(8):2322-39. PubMed ID: 18270986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on intramolecular hydrogen bonding between the pyridine nitrogen and the amide hydrogen of the peptide: synthesis and conformational analysis of tripeptides containing novel amino acids with a pyridine ring.
    Hanyu M; Ninomiya D; Yanagihara R; Murashima T; Miyazawa T; Yamada T
    J Pept Sci; 2005 Jul; 11(8):491-8. PubMed ID: 15747319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attaining control by design over the hydrolytic stability of Fe-TAML oxidation catalysts.
    Polshin V; Popescu DL; Fischer A; Chanda A; Horner DC; Beach ES; Henry J; Qian YL; Horwitz CP; Lente G; Fabian I; Münck E; Bominaar EL; Ryabov AD; Collins TJ
    J Am Chem Soc; 2008 Apr; 130(13):4497-506. PubMed ID: 18335938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amide rotational barriers in picolinamide and nicotinamide: NMR and ab initio studies.
    Olsen RA; Liu L; Ghaderi N; Johns A; Hatcher ME; Mueller LJ
    J Am Chem Soc; 2003 Aug; 125(33):10125-32. PubMed ID: 12914477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone amide linker strategies for the solid-phase synthesis of C-terminal modified peptides.
    Alsina J; Kates SA; Barany G; Albericio F
    Methods Mol Biol; 2005; 298():195-208. PubMed ID: 16044548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging methods in amide- and peptide-bond formation.
    Bode JW
    Curr Opin Drug Discov Devel; 2006 Nov; 9(6):765-75. PubMed ID: 17117685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.
    Stathopoulos P; Papas S; Tsikaris V
    J Pept Sci; 2006 Mar; 12(3):227-32. PubMed ID: 16103992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure and electrochemistry of ferrocene-peptide macrocycles.
    Chowdhury S; Schatte G; Kraatz HB
    Dalton Trans; 2004 Jun; (11):1726-30. PubMed ID: 15252569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and antibacterial activity of cobalt(III) complexes with pyridine-amide ligands.
    Mishra A; Kaushik NK; Verma AK; Gupta R
    Eur J Med Chem; 2008 Oct; 43(10):2189-96. PubMed ID: 17959275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate.
    Sarma BK; Mugesh G
    J Am Chem Soc; 2007 Jul; 129(28):8872-81. PubMed ID: 17585764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique oxidation reaction of amides with pyridine-N-oxide catalyzed by ruthenium porphyrin: direct oxidative conversion of N-acyl-L-proline to N-acyl-L-glutamate.
    Ito R; Umezawa N; Higuchi T
    J Am Chem Soc; 2005 Jan; 127(3):834-5. PubMed ID: 15656611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical relationships between isotope-edited IR spectra and helix geometry in model peptides.
    Barber-Armstrong W; Donaldson T; Wijesooriya H; Silva RA; Decatur SM
    J Am Chem Soc; 2004 Mar; 126(8):2339-45. PubMed ID: 14982437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morpholinone mediated oxazolone-free C-terminus amide coupling permitting a convergent strategy for peptide synthesis.
    Harwood LM; Mountford SJ; Yan R
    J Pept Sci; 2009 Jan; 15(1):1-4. PubMed ID: 19048605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric oxidation of 2-oxo-1,2,3,4-tetrahydropyrimidin-5-carboxamides: substituent effects.
    Memarian HR; Soleymani M; Sabzyan H; Bagherzadeh M; Ahmadi H
    J Phys Chem A; 2011 Jul; 115(29):8264-70. PubMed ID: 21667977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.