BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10428377)

  • 1. Cross-linking of proteins by Maillard processes--characterization and detection of a lysine-arginine cross-link derived from D-glucose.
    Lederer MO; Bühler HP
    Bioorg Med Chem; 1999 Jun; 7(6):1081-8. PubMed ID: 10428377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal.
    Lederer MO; Klaiber RG
    Bioorg Med Chem; 1999 Nov; 7(11):2499-507. PubMed ID: 10632059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor.
    Biemel KM; Reihl O; Conrad J; Lederer MO
    J Biol Chem; 2001 Jun; 276(26):23405-12. PubMed ID: 11279247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiro cross-links: representatives of a new class of glycoxidation products.
    Reihl O; Biemel KM; Eipper W; Lederer MO; Schwack W
    J Agric Food Chem; 2003 Jul; 51(16):4810-8. PubMed ID: 14705917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and quantitative evaluation of the lysine-arginine crosslinks GODIC, MODIC, DODIC, and glucosepan in foods.
    Biemel KM; Bühler HP; Reihl O; Lederer MO
    Nahrung; 2001 Jun; 45(3):210-4. PubMed ID: 11455790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking of proteins by Maillard processes--model reactions of D-glucose or methylglyoxal with butylamine and guanidine derivatives.
    Lederer MO; Gerum F; Severin T
    Bioorg Med Chem; 1998 Jul; 6(7):993-1002. PubMed ID: 9730235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors.
    Grandhee SK; Monnier VM
    J Biol Chem; 1991 Jun; 266(18):11649-53. PubMed ID: 1904866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal.
    Nagaraj RH; Shipanova IN; Faust FM
    J Biol Chem; 1996 Aug; 271(32):19338-45. PubMed ID: 8702619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive survey of the acid-stable fluorescent cross-links formed by ribose with basic amino acids, and partial characterization of a novel Maillard cross-link.
    Graham L
    Biochim Biophys Acta; 1996 Sep; 1297(1):9-16. PubMed ID: 8841375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.
    Reihl O; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):483-91. PubMed ID: 15013385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo.
    Dyer DG; Blackledge JA; Thorpe SR; Baynes JW
    J Biol Chem; 1991 Jun; 266(18):11654-60. PubMed ID: 1904867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate carbonyl mobility--the key process in the formation of alpha-dicarbonyl intermediates.
    Reihl O; Rothenbacher TM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Jun; 339(9):1609-18. PubMed ID: 15183735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of pentosidine and pyrraline in food and chemical models: formation, potential risks and determination.
    Li H; Yu SJ
    J Sci Food Agric; 2018 Jul; 98(9):3225-3233. PubMed ID: 29280151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen is not required for the browning and crosslinking of protein by pentoses: relevance to Maillard reactions in vivo.
    Litchfield JE; Thorpe SR; Baynes JW
    Int J Biochem Cell Biol; 1999 Nov; 31(11):1297-305. PubMed ID: 10605822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane.
    Nemet I; Strauch CM; Monnier VM
    Amino Acids; 2011 Jan; 40(1):167-81. PubMed ID: 20607325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatine plays a direct role as a protein modifier in the formation of a novel advanced glycation end product.
    Miyazaki K; Nagai R; Horiuchi S
    J Biochem; 2002 Oct; 132(4):543-50. PubMed ID: 12359068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Maillard reaction in demineralized dentin in vitro.
    Kleter GA; Damen JJ; Buijs MJ; Ten Cate JM
    Eur J Oral Sci; 1997 Jun; 105(3):278-84. PubMed ID: 9249196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.