These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10428787)

  • 1. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein.
    Aramli LA; Teschke CM
    J Biol Chem; 1999 Aug; 274(32):22217-24. PubMed ID: 10428787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo.
    Parent KN; Ranaghan MJ; Teschke CM
    Mol Microbiol; 2004 Nov; 54(4):1036-50. PubMed ID: 15522085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein.
    Nakonechny WS; Teschke CM
    J Biol Chem; 1998 Oct; 273(42):27236-44. PubMed ID: 9765246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GroEL binds a late folding intermediate of phage P22 coat protein.
    de Beus MD; Doyle SM; Teschke CM
    Cell Stress Chaperones; 2000 Jul; 5(3):163-72. PubMed ID: 11005374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GroEL/S substrate specificity based on substrate unfolding propensity.
    Parent KN; Teschke CM
    Cell Stress Chaperones; 2007; 12(1):20-32. PubMed ID: 17441504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins.
    Gordon CL; Sather SK; Casjens S; King J
    J Biol Chem; 1994 Nov; 269(45):27941-51. PubMed ID: 7961726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL.
    Doyle SM; Anderson E; Zhu D; Braswell EH; Teschke CM
    J Mol Biol; 2003 Sep; 332(4):937-51. PubMed ID: 12972263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The folded conformation of phage P22 coat protein is affected by amino acid substitutions that lead to a cold-sensitive phenotype.
    Fong DG; Doyle SM; Teschke CM
    Biochemistry; 1997 Apr; 36(13):3971-80. PubMed ID: 9092827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic properties of temperature-sensitive folding mutants of the coat protein of phage P22.
    Gordon CL; King J
    Genetics; 1994 Feb; 136(2):427-38. PubMed ID: 8150274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype.
    Teschke CM
    Biochemistry; 1999 Mar; 38(10):2873-81. PubMed ID: 10074339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concerted mechanism for the suppression of a folding defect through interactions with chaperones.
    Doyle SM; Anderson E; Parent KN; Teschke CM
    J Biol Chem; 2004 Apr; 279(17):17473-82. PubMed ID: 14764588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity.
    Teschke CM; King J
    Biochemistry; 1995 May; 34(20):6815-26. PubMed ID: 7756313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of suppressors of temperature-sensitive folding mutations.
    Villafane R; Fleming A; Haase-Pettingell C
    J Bacteriol; 1994 Jan; 176(1):137-42. PubMed ID: 8282689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviation of a defect in protein folding by increasing the rate of subunit assembly.
    Aramli LA; Teschke CM
    J Biol Chem; 2001 Jul; 276(27):25372-7. PubMed ID: 11304542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.
    Parent KN; Suhanovsky MM; Teschke CM
    Mol Microbiol; 2007 Sep; 65(5):1300-10. PubMed ID: 17680786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein.
    Lee SC; Yu MH
    Biochem Biophys Res Commun; 1997 Apr; 233(3):857-62. PubMed ID: 9168948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro.
    Mitraki A; Danner M; King J; Seckler R
    J Biol Chem; 1993 Sep; 268(27):20071-5. PubMed ID: 8376364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein.
    Fane B; Villafane R; Mitraki A; King J
    J Biol Chem; 1991 Jun; 266(18):11640-8. PubMed ID: 1828803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct genetic selection of two classes of R17/MS2 coat proteins with altered capsid assembly properties and expanded RNA-binding activities.
    Wang S; True HL; Seitz EM; Bennett KA; Fouts DE; Gardner JF; Celander DW
    Nucleic Acids Res; 1997 Apr; 25(8):1649-57. PubMed ID: 9092675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 tailspike polypeptide chain.
    Villafane R; King J
    J Mol Biol; 1988 Dec; 204(3):607-19. PubMed ID: 3225847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.