BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 10428800)

  • 21. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
    Brunner K; Tortschanoff A; Hemmens B; Andrew PJ; Mayer B; Kungl AJ
    Biochemistry; 1998 Dec; 37(50):17545-53. PubMed ID: 9860870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuronal nitric-oxide synthase mutant (Ser-1412 --> Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis.
    Adak S; Santolini J; Tikunova S; Wang Q; Johnson JD; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(2):1244-52. PubMed ID: 11038355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the electron transfer properties of neuronal nitric-oxide synthase by reversal of the FMN redox potential.
    Li H; Das A; Sibhatu H; Jamal J; Sligar SG; Poulos TL
    J Biol Chem; 2008 Dec; 283(50):34762-72. PubMed ID: 18852262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras.
    Gachhui R; Abu-Soud HM; Ghosha DK; Presta A; Blazing MA; Mayer B; George SE; Stuehr DJ
    J Biol Chem; 1998 Mar; 273(10):5451-4. PubMed ID: 9488666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.
    Gachhui R; Presta A; Bentley DF; Abu-Soud HM; McArthur R; Brudvig G; Ghosh DK; Stuehr DJ
    J Biol Chem; 1996 Aug; 271(34):20594-602. PubMed ID: 8702805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer.
    Panda K; Ghosh S; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23349-56. PubMed ID: 11325964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.
    Tejero J; Haque MM; Durra D; Stuehr DJ
    J Biol Chem; 2010 Aug; 285(34):25941-9. PubMed ID: 20529840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
    Newman E; Spratt DE; Mosher J; Cheyne B; Montgomery HJ; Wilson DL; Weinberg JB; Smith SM; Salerno JC; Ghosh DK; Guillemette JG
    J Biol Chem; 2004 Aug; 279(32):33547-57. PubMed ID: 15138276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation.
    Gherasim CG; Zaman U; Raza A; Banerjee R
    Biochemistry; 2008 Nov; 47(47):12515-22. PubMed ID: 18980384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Versatile regulation of neuronal nitric oxide synthase by specific regions of its C-terminal tail.
    Tiso M; Tejero J; Panda K; Aulak KS; Stuehr DJ
    Biochemistry; 2007 Dec; 46(50):14418-28. PubMed ID: 18020458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chimeric forms of neuronal nitric oxide synthase identify different regions of the reductase domain that are essential for dimerization and activity.
    Hallmark OG; Phung YT; Black SM
    DNA Cell Biol; 1999 May; 18(5):397-407. PubMed ID: 10360840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins.
    Ilagan RP; Tiso M; Konas DW; Hemann C; Durra D; Hille R; Stuehr DJ
    J Biol Chem; 2008 Jul; 283(28):19603-15. PubMed ID: 18487202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains.
    Guan ZW; Kamatani D; Kimura S; Iyanagi T
    J Biol Chem; 2003 Aug; 278(33):30859-68. PubMed ID: 12777376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.