BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10429191)

  • 41. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. A comparison with protein kinase C isotypes.
    Palmer RH; Dekker LV; Woscholski R; Le Good JA; Gigg R; Parker PJ
    J Biol Chem; 1995 Sep; 270(38):22412-6. PubMed ID: 7673228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.
    Gottwald U; Brokamp R; Karakesisoglou I; Schleicher M; Noegel AA
    Mol Biol Cell; 1996 Feb; 7(2):261-72. PubMed ID: 8688557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain.
    Ni T; Kalli AC; Naughton FB; Yates LA; Naneh O; Kozorog M; Anderluh G; Sansom MS; Gilbert RJ
    Biochem J; 2017 Feb; 474(4):539-556. PubMed ID: 27974389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate.
    Liepiņa I; Czaplewski C; Janmey P; Liwo A
    Biopolymers; 2003; 71(1):49-70. PubMed ID: 12712500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective recognition of phosphatidylinositol 3,4,5-trisphosphate by a synthetic peptide.
    Lu PJ; Chen CS
    J Biol Chem; 1997 Jan; 272(1):466-72. PubMed ID: 8995284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphatidylinositol 4,5-bisphosphate specifically stimulates PP60(c-src) catalyzed phosphorylation of gelsolin and related actin-binding proteins.
    De Corte V; Gettemans J; Vandekerckhove J
    FEBS Lett; 1997 Jan; 401(2-3):191-6. PubMed ID: 9013885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.
    Grabon A; Orłowski A; Tripathi A; Vuorio J; Javanainen M; Róg T; Lönnfors M; McDermott MI; Siebert G; Somerharju P; Vattulainen I; Bankaitis VA
    J Biol Chem; 2017 Sep; 292(35):14438-14455. PubMed ID: 28718450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cofilin and gelsolin segment-1: molecular dynamics simulation and biochemical analysis predict a similar actin binding mode.
    Wriggers W; Tang JX; Azuma T; Marks PW; Janmey PA
    J Mol Biol; 1998 Oct; 282(5):921-32. PubMed ID: 9753544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain.
    Cozier GE; Bouyoucef D; Cullen PJ
    J Biol Chem; 2003 Oct; 278(41):39489-96. PubMed ID: 12885767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PtdIns(3,4)P2, Lamellipodin, and VASP coordinate actin dynamics during phagocytosis in macrophages.
    Montaño-Rendón F; Walpole GFW; Krause M; Hammond GRV; Grinstein S; Fairn GD
    J Cell Biol; 2022 Nov; 221(11):. PubMed ID: 36165850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of two sites in gelsolin with different sensitivities to adenine nucleotides.
    Laham LE; Way M; Yin HL; Janmey PA
    Eur J Biochem; 1995 Nov; 234(1):1-7. PubMed ID: 8529627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption by lithium of phosphatidylinositol-4,5-bisphosphate supply and inositol-1,4,5-trisphosphate generation in Chinese hamster ovary cells expressing human recombinant m1 muscarinic receptors.
    Jenkinson S; Nahorski SR; Challiss RA
    Mol Pharmacol; 1994 Dec; 46(6):1138-48. PubMed ID: 7808434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of a redox reaction on lipid bilayer surfaces by membrane dipole potential.
    Alakoskela JI; Kinnunen PK
    Biophys J; 2001 Jan; 80(1):294-304. PubMed ID: 11159402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin.
    Eichinger L; Noegel AA; Schleicher M
    J Cell Biol; 1991 Feb; 112(4):665-76. PubMed ID: 1847147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin.
    Kusano K; Abe H; Obinata T
    Mol Cell Biochem; 1999 Jan; 190(1-2):133-41. PubMed ID: 10098980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Actin polymerization induces a shape change in actin-containing vesicles.
    Cortese JD; Schwab B; Frieden C; Elson EL
    Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5773-7. PubMed ID: 2548187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of gelsolin with covalently cross-linked actin dimer.
    Doi Y
    Biochemistry; 1992 Oct; 31(41):10061-9. PubMed ID: 1327131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity.
    Mosior M; Six DA; Dennis EA
    J Biol Chem; 1998 Jan; 273(4):2184-91. PubMed ID: 9442060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C.
    Machesky LM; Goldschmidt-Clermont PJ; Pollard TD
    Cell Regul; 1990 Nov; 1(12):937-50. PubMed ID: 1966040
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cofilin and DNase I affect the conformation of the small domain of actin.
    Dedova IV; Dedov VN; Nosworthy NJ; Hambly BD; dos Remedios CG
    Biophys J; 2002 Jun; 82(6):3134-43. PubMed ID: 12023237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.