BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10430727)

  • 1. Automatic control of pressure support mechanical ventilation using fuzzy logic.
    Nemoto T; Hatzakis GE; Thorpe CW; Olivenstein R; Dial S; Bates JH
    Am J Respir Crit Care Med; 1999 Aug; 160(2):550-6. PubMed ID: 10430727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Commentary: Nemoto T et al. (1999). Automatic control of pressure support mechanical ventilation using fuzzy logic.
    Blackwood B
    Nurs Crit Care; 2008; 13(3):178-9. PubMed ID: 18426474
    [No Abstract]   [Full Text] [Related]  

  • 3. Fuzzy logic controller for weaning neonates from mechanical ventilation.
    Hatzakis GE; Davis GM
    Proc AMIA Symp; 2002; ():315-9. PubMed ID: 12463838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weaning infants with respiratory syncytial virus from mechanical ventilation through a fuzzy-logic controller.
    Olliver S; Davis GM; Hatzakis GE
    AMIA Annu Symp Proc; 2003; 2003():499-503. PubMed ID: 14728223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling mechanical ventilation in acute respiratory distress syndrome with fuzzy logic.
    Nguyen B; Bernstein DB; Bates JH
    J Crit Care; 2014 Aug; 29(4):551-6. PubMed ID: 24721387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation.
    Bien MY; Shui Lin Y; Shih CH; Yang YL; Lin HW; Bai KJ; Wang JH; Ru Kou Y
    Crit Care Med; 2011 Oct; 39(10):2253-62. PubMed ID: 21666447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flex: a new computerized system for mechanical ventilation.
    Tehrani FT; Roum JH
    J Clin Monit Comput; 2008 Apr; 22(2):121-30. PubMed ID: 18324476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation.
    Vallverdú I; Calaf N; Subirana M; Net A; Benito S; Mancebo J
    Am J Respir Crit Care Med; 1998 Dec; 158(6):1855-62. PubMed ID: 9847278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of a pressure support ventilation of 6 cm H2O on oxygen consumption of the respiratory muscles during weaning of mechanical ventilation].
    Leleu O; Mayeux I; Jounieaux V
    Rev Mal Respir; 2001 Jun; 18(3):283-8. PubMed ID: 11468589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuro-fuzzy controller for the estimation of tidal volume and respiration frequency ventilator settings for COPD patients ventilated in control mode.
    Tzavaras A; Weller PR; Spyropoulos B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3765-8. PubMed ID: 18002817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.
    Guler H; Ata F
    Proc Inst Mech Eng H; 2014 Sep; 228(9):916-25. PubMed ID: 25205667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New techniques in artificial ventilation].
    Bollaert PE
    Bull Acad Natl Med; 2000; 184(8):1643-50; discussion 1651. PubMed ID: 11471385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of implementing adaptive support ventilation in a medical intensive care unit.
    Chen CW; Wu CP; Dai YL; Perng WC; Chian CF; Su WL; Huang YC
    Respir Care; 2011 Jul; 56(7):976-83. PubMed ID: 21352661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary gas exchange response to weaning with pressure-support ventilation in exacerbated chronic obstructive pulmonary disease patients.
    Ferrer M; Iglesia R; Roca J; Burgos F; Torres A; Rodriguez-Roisin R
    Intensive Care Med; 2002 Nov; 28(11):1595-9. PubMed ID: 12415446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Stepper Motor-Controlled Proportional Valve for Fio
    Gölcük A; Güler İ
    J Med Syst; 2017 Jan; 41(1):1. PubMed ID: 27817129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease.
    Petrof BJ; Legaré M; Goldberg P; Milic-Emili J; Gottfried SB
    Am Rev Respir Dis; 1990 Feb; 141(2):281-9. PubMed ID: 2405757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of parameters affecting blood oxygen saturation and modeling of fuzzy logic system for inspired oxygen prediction.
    Radhakrishnan S; Nair SG; Isaac J
    Comput Methods Programs Biomed; 2019 Jul; 176():43-49. PubMed ID: 31200910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A multicenter study of respiratory multiple index in predicting weaning from mechanical ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease].
    Li ZB; Gao XJ; Wang DH; Zhang B; Zhang ZP; Hu ZM; Xu L; Qin YZ
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2013 Jun; 25(6):339-42. PubMed ID: 23739566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation.
    Grasso S; Puntillo F; Mascia L; Ancona G; Fiore T; Bruno F; Slutsky AS; Ranieri VM
    Am J Respir Crit Care Med; 2000 Mar; 161(3 Pt 1):819-26. PubMed ID: 10712328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologic impact of closed-system endotracheal suctioning in spontaneously breathing patients receiving mechanical ventilation.
    Seymour CW; Cross BJ; Cooke CR; Gallop RL; Fuchs BD
    Respir Care; 2009 Mar; 54(3):367-74. PubMed ID: 19245731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.