BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10431897)

  • 1. Physiologic identification of eighth nerve subdivisions: direct recordings with bipolar and monopolar electrodes.
    Nguyen BH; Javel E; Levine SC
    Am J Otol; 1999 Jul; 20(4):522-34. PubMed ID: 10431897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Click-evoked responses from the exposed intracranial portion of the eighth nerve during vestibular nerve section: bipolar and monopolar recordings.
    Młller AR; Colletti V; Fiorino FG
    Electroencephalogr Clin Neurophysiol; 1994 Jan; 92(1):17-29. PubMed ID: 7508850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the VIIIth cranial nerve by electrical stimulation: methods for differentiating auditory from vestibular responses.
    Berryhill WE; Javel E
    Otol Neurotol; 2001 Nov; 22(6):944-51. PubMed ID: 11698824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode independence in intraneural cochlear nerve stimulation.
    Badi AN; Owa AO; Shelton C; Normann RA
    Otol Neurotol; 2007 Jan; 28(1):16-24. PubMed ID: 17195741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolar recording of the cochlear nerve action potentials during cerebellopontine angle surgery.
    Colletti V; Fiorino FG
    Am J Otol; 1994 Nov; 15(6):798-803. PubMed ID: 8572095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracochlear and extracochlear ECAPs suggest antidromic action potentials.
    Miller CA; Abbas PJ; Hay-McCutcheon MJ; Robinson BK; Nourski KV; Jeng FC
    Hear Res; 2004 Dec; 198(1-2):75-86. PubMed ID: 15567605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory brainstem implant: electrophysiologic responses and subject perception.
    Herrmann BS; Brown MC; Eddington DK; Hancock KE; Lee DJ
    Ear Hear; 2015; 36(3):368-76. PubMed ID: 25437141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrophysiological identification of the cochlear and vestibular nerves in the cerebellopontine angle: experimental study and clinical implication].
    Sekiya T; Okabe S; Iwabuchi T; Ottomo M
    No Shinkei Geka; 1992 Sep; 20(9):947-53. PubMed ID: 1407359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Click evoked neurogenic vestibular potentials (NVESTEPs): a method of assessing the function of the vestibular system.
    Papathanasiou E; Zamba-Papanicolaou E; Pantziaris M; Kyriakides T; Papacostas S; Myrianthopoulou P; Pattichis C; Iliopoulos I; Piperidou C
    Electromyogr Clin Neurophysiol; 2003; 43(7):399-408. PubMed ID: 14626719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the electrode position during acoustic neuroma surgery.
    Frohne C; Lesinski A; Battmer RD; Lenarz T
    Am J Otol; 1997 Nov; 18(6 Suppl):S95-6. PubMed ID: 9391615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiologic effects of placing cochlear implant electrodes in a perimodiolar position in young children.
    Wackym PA; Firszt JB; Gaggl W; Runge-Samuelson CL; Reeder RM; Raulie JC
    Laryngoscope; 2004 Jan; 114(1):71-6. PubMed ID: 14709998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New perspectives in intraoperative facial nerve monitoring with antidromic potentials.
    Colletti V; Fiorino FG; Policante Z; Bruni L
    Am J Otol; 1996 Sep; 17(5):755-62. PubMed ID: 8892573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar cochlear nerve recording technique: a preliminary report.
    Rosenberg SI; Martin WH; Pratt H; Schwegler JW; Silverstein H
    Am J Otol; 1993 Jul; 14(4):362-8. PubMed ID: 8238273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of intra-operative motor evoked potentials in the optimization of chronic cortical stimulation for the treatment of neuropathic pain.
    Holsheimer J; Lefaucheur JP; Buitenweg JR; Goujon C; Nineb A; Nguyen JP
    Clin Neurophysiol; 2007 Oct; 118(10):2287-96. PubMed ID: 17765605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylate-induced changes in cat auditory nerve activity.
    Martin WH; Schwegler JW; Scheibelhoffer J; Ronis ML
    Laryngoscope; 1993 Jun; 103(6):600-4. PubMed ID: 8502092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uni- and bipolar surface recording of human nerve responses.
    Winkler T; Stålberg E; Haas LF
    Muscle Nerve; 1991 Feb; 14(2):133-41. PubMed ID: 2000104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of using silicon-substrate recording electrodes within the auditory nerve.
    Miller CA; Robinson BK; Hetke JF; Abbas PJ; Nourski KV
    Hear Res; 2004 Dec; 198(1-2):48-58. PubMed ID: 15567602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Auditory brain stem potentials evoked by electrical stimulation of cochlear nuclei during central auditive implant setting].
    Alegre M; Iriarte J; Manrique M; Huarte A; Vanaclocha V; Artieda J
    Rev Neurol; 1999 Aug 1-15; 29(3):198-200. PubMed ID: 10797901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.