BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10432353)

  • 1. Release of nitric oxide within the coeliac plexus is involved in the organization of a gastroduodenal inhibitory reflex in the rabbit.
    Quinson N; Catalin D; Niel JP; Miolan JP
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):223-34. PubMed ID: 10432353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide released by gastric mechanoreceptors modulates nicotinic activation of coeliac plexus neurons in the rabbit.
    Quinson N; Niel JP; Miolan JP
    Eur J Neurosci; 2000 Apr; 12(4):1521-4. PubMed ID: 10762381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the organization of a gastroduodenal inhibitory reflex by the coeliac plexus.
    Mazet B; Miolan JP; Niel JP; Roman C
    J Auton Nerv Syst; 1994; 46(1-2):135-46. PubMed ID: 8120337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve-induced release of nitric oxide exerts dual effects on nicotinic transmission within the coeliac ganglion in the rabbit.
    Quinson N; Catalin D; Miolan JP; Niel JP
    Neuroscience; 1998 May; 84(1):229-40. PubMed ID: 9522377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of endogenous and exogenous nitric oxide on endothelin-1 production in cultured vascular endothelial cells.
    Mitsutomi N; Akashi C; Odagiri J; Matsumura Y
    Eur J Pharmacol; 1999 Jan; 364(1):65-73. PubMed ID: 9920186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From biological gastroenterology to fundamental neurosciences: how studies in gastric emptying have led to the discovery of a new mechanism of neuronal functioning.
    Fasano C; Niel JP
    Gastroenterol Clin Biol; 2010; 34(4-5):260-6. PubMed ID: 20510563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of CCK in avian gastroduodenal motility: evidence for nitric oxide involvement.
    Martinez V; Jimenez M; Goñalons E; Vergara P
    Am J Physiol; 1993 Nov; 265(5 Pt 1):G842-50. PubMed ID: 7902011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic receptor activation is a prerequisite for the endogenous release of nitric oxide modulating nicotinic transmission within the coeliac ganglion in the rabbit.
    Quinson N; Miolan JP; Niel JP
    Neuroscience; 2000; 95(4):1129-38. PubMed ID: 10682720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of L-arginine on the afferent resting activity in the cephalopod statocyst.
    Tu Y; Budelmann BU
    Brain Res; 1999 Oct; 845(1):35-49. PubMed ID: 10529442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide as an inhibitory neurotransmitter in the canine pyloric sphincter.
    Bayguinov O; Sanders KM
    Am J Physiol; 1993 May; 264(5 Pt 1):G975-83. PubMed ID: 8388645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of nitric oxide donors on the responses to nitrergic nerve stimulation in the mouse duodenum.
    Oğülener N; Ergün Y; Döndaş N; Dikmen A
    Eur J Pharmacol; 2001 Jun; 421(2):121-31. PubMed ID: 11399268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide modulates local reflexes of the tailfan of the crayfish.
    Araki M; Schuppe H; Fujimoto S; Nagayama T; Newland PL
    J Neurobiol; 2004 Aug; 60(2):176-86. PubMed ID: 15266649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels.
    Mulè F; D'Angelo S; Serio R
    Br J Pharmacol; 1999 May; 127(2):514-20. PubMed ID: 10385253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitatory role of NO in neural norepinephrine release in the rat kidney.
    Tanioka H; Nakamura K; Fujimura S; Yoshida M; Suzuki-Kusaba M; Hisa H; Satoh S
    Am J Physiol Regul Integr Comp Physiol; 2002 May; 282(5):R1436-42. PubMed ID: 11959687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of central glutamate receptors, nitric oxide and soluble guanylyl cyclase in the inhibition by endotoxin of rat gastric acid secretion.
    García-Zaragozá E; Barrachina MD; Moreno L; Esplugues JV
    Br J Pharmacol; 2000 Jul; 130(6):1283-8. PubMed ID: 10903967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-sensitive and -insensitive contractions of the isolated rabbit iris sphincter muscle.
    Chuman T; Chuman H; Nao-i N; Sawada A; Yamamoto R; Wada A
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1437-43. PubMed ID: 8641846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of NO/cGMP pathway in toluene-induced locomotor hyperactivity in female rats.
    Chan MH; Chien TH; Lee PY; Chen HH
    Psychopharmacology (Berl); 2004 Nov; 176(3-4):435-9. PubMed ID: 15118807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats.
    Galdino GS; Xavier CH; Almeida R; Silva G; Fontes MA; Menezes G; Duarte ID; Perez AC
    Int J Neurosci; 2015; 125(10):765-73. PubMed ID: 25271801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of nitrergic neuroeffector transmission in guinea-pig colon by a selective inhibitor of soluble guanylyl cyclase.
    Olgart C; Hallén K; Wiklund NP; Iversen HH; Gustafsson LE
    Acta Physiol Scand; 1998 Jan; 162(1):89-95. PubMed ID: 9492906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a novel guanylate cyclase inhibitor on nitric oxide-dependent inhibitory neurotransmission in canine proximal colon.
    Franck H; Sweeney KM; Sanders KM; Shuttleworth CW
    Br J Pharmacol; 1997 Nov; 122(6):1223-9. PubMed ID: 9401790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.