These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 10433420)

  • 1. Runners adjust leg stiffness for their first step on a new running surface.
    Ferris DP; Liang K; Farley CT
    J Biomech; 1999 Aug; 32(8):787-94. PubMed ID: 10433420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of leg stiffness and surfaces stiffness during human hopping.
    Ferris DP; Farley CT
    J Appl Physiol (1985); 1997 Jan; 82(1):15-22; discussion 13-4. PubMed ID: 9029193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human hoppers compensate for simultaneous changes in surface compression and damping.
    Moritz CT; Farley CT
    J Biomech; 2006; 39(6):1030-8. PubMed ID: 16549093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Running on uneven ground: leg adjustment to vertical steps and self-stability.
    Grimmer S; Ernst M; Günther M; Blickhan R
    J Exp Biol; 2008 Sep; 211(Pt 18):2989-3000. PubMed ID: 18775936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Running in the real world: adjusting leg stiffness for different surfaces.
    Ferris DP; Louie M; Farley CT
    Proc Biol Sci; 1998 Jun; 265(1400):989-94. PubMed ID: 9675909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Older Runners Retain Youthful Running Economy despite Biomechanical Differences.
    Beck ON; Kipp S; Roby JM; Grabowski AM; Kram R; Ortega JD
    Med Sci Sports Exerc; 2016 Apr; 48(4):697-704. PubMed ID: 26587844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prosthetic stiffness and added mass on metabolic power and asymmetry in female runners with a leg amputation.
    Ashcraft KR; Grabowski AM
    J Appl Physiol (1985); 2024 Jul; 137(1):85-98. PubMed ID: 38841756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leg stiffness and foot orientations during running.
    Viale F; Dalleau G; Freychat P; Lacour JR; Belli A
    Foot Ankle Int; 1998 Nov; 19(11):761-5. PubMed ID: 9840206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Footfall dynamics for racewalkers and runners barefoot on compliant surfaces.
    Wilson JF; Rochelle RD
    J Biomech; 2009 Nov; 42(15):2472-8. PubMed ID: 19682693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leg and vertical stiffness (a)symmetry between dominant and non-dominant legs in young male runners.
    Pappas P; Paradisis G; Vagenas G
    Hum Mov Sci; 2015 Apr; 40():273-83. PubMed ID: 25625812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in spring-mass characteristics during treadmill running to exhaustion.
    Dutto DJ; Smith GA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1324-31. PubMed ID: 12165688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive dynamics change leg mechanics for an unexpected surface during human hopping.
    Moritz CT; Farley CT
    J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg stiffness and stride frequency in human running.
    Farley CT; González O
    J Biomech; 1996 Feb; 29(2):181-6. PubMed ID: 8849811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiffness adaptations in shod running.
    Divert C; Baur H; Mornieux G; Mayer F; Belli A
    J Appl Biomech; 2005 Nov; 21(4):311-21. PubMed ID: 16498177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion.
    Moritz CT; Farley CT
    J Exp Biol; 2005 Mar; 208(Pt 5):939-49. PubMed ID: 15755892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg stiffness decreases during a run to exhaustion at the speed at VO2max.
    Hayes PR; Caplan N
    Eur J Sport Sci; 2014; 14(6):556-62. PubMed ID: 24410623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-leg compression, running mechanics, and economy in trained distance runners.
    Stickford AS; Chapman RF; Johnston JD; Stager JM
    Int J Sports Physiol Perform; 2015 Jan; 10(1):76-83. PubMed ID: 24911991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and mechanics of human running on surfaces of different stiffnesses.
    Kerdok AE; Biewener AA; McMahon TA; Weyand PG; Herr HM
    J Appl Physiol (1985); 2002 Feb; 92(2):469-78. PubMed ID: 11796653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faster top running speeds are achieved with greater ground forces not more rapid leg movements.
    Weyand PG; Sternlight DB; Bellizzi MJ; Wright S
    J Appl Physiol (1985); 2000 Nov; 89(5):1991-9. PubMed ID: 11053354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.