BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 10433701)

  • 1. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity.
    Lehoux IE; Mitra B
    Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Feb; 43(7):1883-90. PubMed ID: 14967029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects.
    Lehoux IE; Mitra B
    Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding.
    Xu Y; Dewanti AR; Mitra B
    Biochemistry; 2002 Oct; 41(41):12313-9. PubMed ID: 12369819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxamates as substrates and inhibitors for FMN-dependent 2-hydroxy acid dehydrogenases.
    Amar D; North P; Miskiniene V; Cénas N; Lederer F
    Bioorg Chem; 2002 Jun; 30(3):145-62. PubMed ID: 12406701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of arginine 277 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate binding and transition state stabilization.
    Lehoux IE; Mitra B
    Biochemistry; 2000 Aug; 39(33):10055-65. PubMed ID: 10955993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of histidinol dehydrogenase reveals roles for conserved histidine residues.
    Teng H; Grubmeyer C
    Biochemistry; 1999 Jun; 38(22):7363-71. PubMed ID: 10353848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereospecificity and catalytic function of histidine residues in 4a-hydroxy-tetrahydropterin dehydratase/DCoH.
    Rebrin I; Thöny B; Bailey SW; Ayling JE
    Biochemistry; 1998 Aug; 37(32):11246-54. PubMed ID: 9698371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction.
    Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR
    Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of the active site flap (20s loop) of mandelate racemase.
    Bourque JR; Bearne SL
    Biochemistry; 2008 Jan; 47(2):566-78. PubMed ID: 18092808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant.
    Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2788-97. PubMed ID: 7893690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of the histidine-aspartate ion pair of flavocytochrome b2 (L-lactate dehydrogenase): substitution of Asp282 with asparagine.
    Gondry M; Lederer F
    Biochemistry; 1996 Jul; 35(26):8587-94. PubMed ID: 8679620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of histidine 351 in the reaction of alcohol oxidation catalyzed by choline oxidase.
    Rungsrisuriyachai K; Gadda G
    Biochemistry; 2008 Jul; 47(26):6762-9. PubMed ID: 18540638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.